14.75: PROBLEM SET 1

Please include stata do-file code and output for all exercises.

(1) Stata Exercises.

- (a) Open a blank stata dataset and set the number of observations to 100.
- (b) Generate a variable, t, running from 1 to 100.
- (c) Generate another variable α which has value 3 for all 100 observations.
- (d) Generate ϵ_t as a random normal variable with mean 0 and standard deviation 1.
- (e) Generate x_t as a random uniform variable with range [0,1]
- (f) Generate outcome variable y_t where $\beta = 2$,

$$y_t = \alpha + \beta x_t + \epsilon_t.$$

- (g) Estimate $\hat{\beta}$.
 - (i) Test $H_0: \beta = 0.$
 - (ii) Test H_0 : $\beta = 1.2$.
- (h) Generate v_t as a random normal variable with mean 0 and standard deviation 1.Generate q_t as

$$q_t = x_t + 2x_t^3 + v_t.$$

What is the correlation between q and x? Generate outcome variable z_t where $\beta = 2$, $\gamma = 3$,

$$z_t = \alpha + \beta x_t + \gamma q_t + \epsilon_t.$$

Estimate $\hat{\beta}$ from (misspecified) model:

$$x_t = \alpha + \beta x_t + u_t.$$

Test H_0 : $\beta = 2$. Discuss.

- (2) (A review of linear regression.) Use the AssassinationsData.dta dataset.
 - (a) Define absnpolity2dummy11 as the absolute value of npolity2dummy11.
 - (b) Regress whether the institution changed from 1 year before the attempt to 1 year after the attempt on whether or not the attempt was successful.
 - (i) Interpret β .
 - (ii) What assumptions do we need to interpret this as the expected difference in outcomes between when the attempt succeeds and when it fails?
 - (iii) Why might these assumptions fail?
 - (iv) Test the hypothesis that $\beta = 0$ at the 5% level. Do you reject or fail to reject the null?
 - (c) Control for whether the weapon was discharged in the specification from (a).
 - (i) Why would you want to include these controls?
 - (ii) Does your interpretation of $\hat{\beta}$ change? If so, how so?
 - (iii) Under what assumptions can we interpret $\hat{\beta}$ as the expected difference in outcomes between when the attempt succeeds and when it fails?
 - (iv) Test the hypothesis that $\beta = 0.1$ at the 5% level. Do you reject or fail to reject the null?

- (3) (Instrumental Variables.) Use the AJRData.dta dataset.
 - (a) Regress the log GDP per capita in 1995 on the average protection against expropriation risk (avexpr).
 - (i) Interpret $\widehat{\beta}_{ols}$.
 - (ii) Is your interpretation causal? Why or why not?
 - (iii) Plot log GDP per capita in 95 against avexpr.
 - (b) Regress the average protection against expropriation risk on settler mortality. Call this $\hat{\pi}$.
 - (i) Plot avexpr against settler mortality.
 - (ii) Interpret the relationship.
 - (c) Regress the log GDP per capita in 1995 on settler mortality. Call this $\hat{\gamma}$.
 - (i) Plot the relationship.
 - (ii) What is $\widehat{\underline{\gamma}}$?
 - (d) Compute a 2SLS regression of log GDP per capita in 1995 on avexpr, using settler mortality as an instrumental variable.
 - (i) Interpret β_{2sls} .
 - (ii) Compare $\hat{\beta}_{2sls}$ to $\hat{\beta}_{ols}$. Are they similar or different? Why do you think this is the case?
 - (iii) Under what assumption can you interpret each of these *causally*.
 - (iv) Compare $\hat{\beta}_{2sls}$ to $\frac{\gamma}{\pi}$. Explain, mathematically, the relationship between $\hat{\beta}_{2sls}$, $\hat{\pi}$, and $\hat{\gamma}$.

14.75 Political Economy and Economic Development Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.