14.771 Development Economics: Microeconomic issues and Policy Models Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Education Quality

Esther Duflo

14.771

School quality in Developing Countries

- There has been rapid improvement in school enrollment in developing countries over the last 10-15 years.
- However these improvements have not been matched by improvement in school quality:
 - Low learning performance (ASER study in India)
 - Massive Teacher absence (Chaudhury and other: 24% in India)
- Education quality has been an extremely active domain of research, and in particular there are a series of randomized evaluation paper on various issues:
 - "Production function" issues: class size, textbooks, flipcharts, etc.
 - Incentives for students, parents, and teachers
 - School systems:
 - Pedagogy (curriculum etc.)
 - Para-teachers vs regular teachers
 - Parent information/mobilization (report cards, school commitees etc.)

Duflo, Hanna, Ryan: Incentives for Para-teachers

- In India, regular teachers have essentially no incentives (tenure, no increase in salary)
- Para-teachers and incentives
 - It should be easier to provide them with good incentives
 - · However, in India, they are no more likely to be present
 - Could be because they are actually not provided with incentives
- Motivating questions for this paper:
 - Can an incentive programs for para-teachers increase their presence?
 - Would increase presence lead to increase in learning or would it be undermined by:
 - Multitasking
 - Loss in intrinsic motivation
 - Incompetence

What the paper does

- 1 A randomized Experiment in teacher incentives
- A regression discontinuity Design scheme to interpret the results: We estimate the change in teacher behavior just before and just after the end of a month, and this suggests that they respond to financial incentives
- Output: Use the treatment group to estimate a structural model; The non-linear nature of the attendance rules allows for estimation of a simple dynamic labor supply model, where teacher chooses every day between going to school or staying home and getting an outside option

The Context

- We worked with Seva Mandir, an NGO in rural Rajasthan
- They run 150 "non-formal education center" (NFE): single teacher school for students who do not attend regular school.
- Students are 7-14 year old, completely illiterate when they join.
- Schools teach basic hindi and math skills and prepare students to "graduate" to primary school.
- In 1997, 20 million children were served by such NFEs

The Intervention

• Teacher in Intervention school were provided with a camera with non-temperable time and date stamp

A picture

Photograph of children in school removed due to copyright restrictions.

The Intervention

- Teacher in Intervention school were provided with a camera with non-temperable time and date stamp
- Instructed to take a picture of themselves and the children every day (morning and afternoon). A valid pairs of picture has:
 - Two pictures taken the same day, separated by at least 5 hours each.
 - At least 8 children per picture
- Payment is calculated each month and is a non-linear function of attendance:
 - Up to 10 days: Rs 500.
 - Each day above 10 days: Rs 50.
- In non-intervention schools, teachers receive Rs 1000, and are reminded by attending at least 20 days is compulsory.

The Evaluation

- We originally picked 120 schools, out of which 7 closed immediately after they were picked to be in the study (unrelated to the study).
- 57 treatment schools, the rest control.
- Data collection:
 - Teacher and student attendance: Monthly random checks.
 - In treatment schools: Camera data
 - Students learning: tests in September 03-April 04-Oct 04
 - Long term impact: a new sets of random checks was done in 2006-2007, and a new set of test scores were done in 2007

The Randomized evaluation Checklist

1 What was the power of the Experiment?

- At what level was the experiment randomized?
- We need to take into account clustering at that level in computing our standard error
- This affect our *power* as well
- What the randomization successful (was there balance between treatment and control group in covariates)
 - Ways to enforce balance: Stratifying
 - Ways to check balance: Compare covariates
- 3 Did we have attrition (lost observations)?
 - If so, how did we deal with it?
- 4 Did we have non-compliance?
 - If so how did we deal with it?
- **5** Did we have contagion (externalities) between treatment and control group?

Power

- We know that $E[Y_i(0)|W_i = 1] = [Y_i(0)|W_i = 0]$
- But in a finite sample, it may or may not hold.
- Size (level) of a test (e.g. test H₀ ATE=0): Probability of a type I error: I reject H₀ when H₀ is true
- Generally we set the size at 5%.
- Power of a test: 1-probability of type II error.
- Type II error: for a given size, I do not reject 0, when I should have.
- Power depend on effect of program, and on precision of the estimate:
 - Sample size
 - Level of Randomization: If I randomize at the group level, I need to cluster at this group level: need to adjust power calculation for that (it will depend on size of the group, and expected correlation of outcomes within the group).

The Randomized evaluation Checklist

- 1 What was the power of the Experiment?
 - At what level was the experiment randomized?
 - We need to take into account clustering at that level in computing our standard error
 - This affect our *power* as well
- 2 What the randomization successful (was there balance between treatment and control group in covariates)
 - Ways to enforce balance: Stratifying (creating block of covariates, and randomize within those)
 - Ways to check balance: Compare covariates
- 3 Did we have attrition (lost observations)?
 - If so, how did we deal with it?
- 4 Did we have non-compliance?
 - If so how did we deal with it?
- **5** Did we have contagion (externalities) between treatment and control group?

Checking the Balance in the Camera Experiment

Table 1: Is School Quality Similar in Tre	reatment and Control Groups Prior to Program				
	Treatment	Control	Difference		
	(1)	(2)	(3)		
A. Teac	cher Attendance				
School Open	0.66	0.64	0.02		
			(0.11)		
	41	39	80		
B. Student Partic	cipation (Random Chec	k)			
Number of Students Present	17.71	15.92	1.78		
			(2.31)		
	27	25	52		
C. Teach	er Qualifications				
Teacher Test Scores	34.99	33.62	1.37		
			(2.01)		
	53	56	109		
Teacher Highest Grade Completed	10.21	9.80	0.41		
			(0.46)		
	57	54	111		

m •

School quality

	Treatment Control Differen				
	(1)	(2)	(3)		
D. Teacher Performance Me	asures (Random	Check)			
Percentage of Children Sitting Within Classroom	0.83	0.84	0.00		
			(0.09)		
	27	25	52		
Percent of Teachers Interacting with Students	0.78	0.72	0.06		
			(0.12)		
	27	25	52		
Blackboards Utilized	0.85	0.89	-0.04		
			(0.11)		
	20	19	39		
E. School Infra	istructure				
Infrastructure Index	3.39	3.20	0.19		
			(0.30)		
	57	55	112		
Fstat(1,110)			1.21		
p-value			(0.27)		

m

Students

1 able 2:	Are Student	s similar	Prior 10 Pro	gram:		
	_	Levels		Norma	lized by (Control
	Treatment	Control	Difference	Treatment	Control	Difference
	(1)	(2)	(3)	(4)	(5)	(6)
	A. Can	the Child	Write?			
Took Written Exam	0.17	0.19	-0.02			
			(0.04)			
	1136	1094	2230			
	В.	Oral Exa	m			
Math Score on Oral Exam	7.82	8.12	-0.30	-0.10	0.00	-0.10
			(0.27)			(0.09)
	940	888	1828	940	888	1828
Language Score on Oral Exam	3.63	3.74	-0.10	-0.03	0.00	-0.03
			(0.30)			(0.08)
	940	888	1828	940	888	1828
Total Score on Oral Exam	11.44	11.95	-0.51	-0.08	0.00	-0.08
Total Scole on Olar Exam	11.44	11.75	(0.48)	-0.00	0.00	(0.07)
	940	888	1828	940	888	1828
				210	000	1020
Math Score on Written Exam		Vritten Ex		0.00	0.00	0.22
Math Score on Written Exam	8.62	7.98	0.64	0.23	0.00	0.23
	107	200	(0.51)	107	200	(0.18)
	196	206	402	196	206	402
Language Score on Written Exam	3.62	3.44	0.18	0.08	0.00	0.08
			(0.46)			(0.20)
	196	206	402	196	206	402
Total Score on Written Exam	12.17	11.41	0.76	0.16	0.00	0.16
			(0.90)			(0.19)
	196	206	402	196	206	402

Table 2:	Are Students	Similar Prior	То	Program?
----------	--------------	---------------	----	----------

The Randomized evaluation Checklist

- 1 What was the power of the Experiment?
 - At what level was the experiment randomized?
 - We need to take into account clustering at that level in computing our standard error
 - This affect our *power* as well
- What the randomization successful (was there balance between treatment and control group in covariates)
 - Ways to enforce balance: Stratifying (creating block of covariates, and randomize within those)
 - Ways to check balance: Compare covariates
- 3 Did we have attrition (lost observations)?
 - If so, how did we deal with it?
- 4 Did we have non-compliance?
 - If so how did we deal with it?
- **5** Did we have contagion (externalities) between treatment and control group?

Attrition

- At the school level: some schools got lost, for reasons not related to the program
- At the individual level for the test: we have substantial attrition
 - Why is that a potential problem?
 - When will it be a problem?
 - What should we check?
 - percentage attrition is not differential by group
 - observable characteristics of attritors are no different in T and C group
 - If not what can we do?
 - Assume a selection process, and correct for it (we lose main advantage of a random sample)
 - Provide bounds

Attrition

Table 9: Descr	riptive Statistics for Mid Test and Post Test Mid Test Post Test					
		Mid Te:				
	Treatment	Control	Difference	Treatment	Control	Difference
	A. Attrition					
Percent Attrition	0.11	0.22	-0.10	0.24	0.21	0.03
			(0.05)			(0.04)
Difference in Percent Written of Pre-Test attriters-stayers	0.01	0.03	0.02	0.06	-0.03	0.10
			(0.06)			(0.06)
Difference in Verbal Test of Pre-Test attriters-stayers	0.05	0.08	-0.03	0.02	0.12	-0.10
			(0.14)			(0.14)
Difference in Written Test of Pre-Test attriters-stayers	-0.41	-0.23	-0.18	-0.19	-0.13	-0.06
Difference in written rest of Fre-rest attrifers-stayers	-0.41	-0.23	(0.34)	-0.19	-0.15	(0.29)
						. ,
	B. Exam Scor					
Took Written	0.36	0.33	0.03	0.61	0.57	0.04
			(0.04)			(0.05)
Math	0.14	0.00	0.14	-0.08	-0.24	0.16
			(0.10)			(0.15)
Language	0.14	0.00	0.14	1.71	1.60	0.11
BanBo	0.14	0.00	(0.10)		1.00	(0.11)
Total	0.14	0.00	0.14	0.35	0.24	0.12
			(0.10)			(0118)/49

Table 9: Descriptive Statistics for Mid Test and Post Test

The Randomized evaluation Checklist

- 1 What was the power of the Experiment?
 - At what level was the experiment randomized?
 - We need to take into account clustering at that level in computing our standard error
 - This affect our *power* as well
- What the randomization successful (was there balance between treatment and control group in covariates)
 - Ways to enforce balance: Stratifying (creating block of covariates, and randomize within those)
 - Ways to check balance: Compare covariates
- 3 Did we have attrition (lost observations)?
 - If so, how did we deal with it?
- 4 Did we have non-compliance?
 - If so how did we deal with it? (next lecture)
- **5** Did we have contagion (externalities) between treatment and control group?

The Randomized evaluation Checklist

- 1 What was the power of the Experiment?
 - At what level was the experiment randomized?
 - We need to take into account clustering at that level in computing our standard error
 - This affect our *power* as well
- What the randomization successful (was there balance between treatment and control group in covariates)
 - Ways to enforce balance: Stratifying (creating block of covariates, and randomize within those)
 - Ways to check balance: Compare covariates
- 3 Did we have attrition (lost observations)?
 - If so, how did we deal with it?
- 4 Did we have non-compliance?
 - If so how did we deal with it?
- **b** Did we have contagion (externalities) between treatment and control group?

Attendance: Graphical Evidence

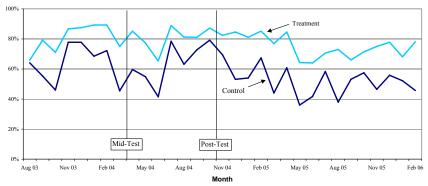


Figure 2: Percentage of Schools Open during Random Checks

Attendance: tables

Sept	2003-Feb 2	006	Difference Betw	veen Treatment and	Control Schools
Treatment	Control	Diff	Until Mid-Test	Mid to Post Test	After Post Test
(1)	(2)	(3)	(4)	(5)	(6)
			A. All Teachers		
0.79	0.58	0.21	0.20	0.20	0.23
		(0.03)	(0.04)	(0.04)	(0.04)
1575	1496	3071	882	660	1529
		B. Teacher	s with Above Media	n Test Scores	
0.78	0.63	0.15	0.15	0.15	0.14
		(0.04)	(0.05)	(0.05)	(0.06)
843	702	1545	423	327	795
		C. Teacher	rs with Below Media	n Test Scores	
0.78	0.53	0.24	0.21	0.14	0.32
		(0.04)	(0.05)	(0.06)	(0.06)
625	757	1382	412	300	670

Table 3: Teacher Attendance

Cheating?

Scenario	Number	Percent of Total
A. Possible Scenari	os	
School Open and Valid Photos	879	66%
School Open and Invalid Photos	179	13%
School Closed and Valid Photos	88	7%
School Closed and Invalid Photos	191	14%
B. Out of 179 where School is Open, the pho	otos are invalid b	pecause
School not open for full 5 hours	43	24%
Only one photo	90	50%
Not enough Children	36	20%
Instructor not in Photo	9	5%
Don't Know	1	1%
C. Out of 88 where School is Closed and	the photos are ve	alid
Random check completed after the school closed	13	15%
Camera broke/excused meeting	21	24%
Teacher left in the middle of the day	54	61%

Table 4: Comparing Random Checks to Photo Data for Treatment Schools

No evidence of Multitasking

Table 7: Teacher Performance							
	Sept	2003-Feb 2	006	Difference Bet	Difference Between Treatment and Control Schools		
	Treatment	Control	Diff	Until Mid-Test	Mid to Post Test	After Post Test	
	(1)	(2)	(3)	(4)	(5)	(6)	
Percent of Children Sitting Within	0.72	0.73	-0.01	0.01	0.04	-0.01	
Classroom			(0.01)	(0.89)	(0.03)	(0.02)	
	1239	867	2106	643	480	983	
Percent of Teachers Interacting with Students	0.55	0.57	-0.02 (0.02)	-0.02 (0.04)	0.05	-0.04 (0.03)	
Statemes	1239	867	2106	643	480	983	
Blackboards Utilized	0.92	0.93	-0.01	-256766.00	0.01	-0.01	
	990	708	(0.01) 1698	(0.02) 613	(0.02) 472	(0.02) 613	

Table 7: Teacher Performance

Notes: (1) Teacher Performance Measures from Random Checks only includes schools that were open during the random check. (2) Standard errors are clustered by school.

No increase on conditional attendance, more days worked

	Table 8:	Child Atte	endance					
	Se	ot 03-Feb 0	6	Difference Betw	Difference Between Treatment and Control Schools			
	Treatment	Control	Diff	Until Mid-Test	Mid to Post Test	After Post Test		
	(1)	(2)	(3)	(4)	(5)	(6)		
	. Attendance Co							
Attendance of Students Present at Pre-Test Exam	0.46	0.46	0.01	0.02	0.03	0.00		
			(0.03)	(0.03)	(0.04)	(0.03)		
	23495	16280	39775					
Attendance for Children who did not leave NFE	0.62	0.58	0.04	0.02	0.04	0.05		
			(0.03)	(0.03)	(0.04)	(0.03)		
	12956	10737	23693					
	B. Total Instr	uction Tim	e (Presence	2)				
Presence for Students Present at Pre-Test Exam	0.37	0.28	0.09	0.10	0.10	0.08		
			(0.03)	(0.03)	(0.04)	(0.03)		
	29489	26695	56184					
Presence for Student who did not leave NFE	0.50	0.36	0.13	0.10	0.13	0.15		
			(0.03)	(0.04)	(0.05)	(0.04)		
	16274	17247	33521	()	()	()		
C. Presence, by Studen	t Learning Lev	el at Progra	ım Start (fo	or those who did no	t leave)			
Took Oral Pre-Test	0.50	0.36	0.14	0.11	0.14	0.15		
			(0.03)	(0.03)	(0.05)	(0.04)		
	14778	14335	29113	()	()	()		
Took Written Pre-Test	0.48	0.39	0.10	0.07	0.07	0.11		
	5.10	,	(0.06)	(0.07)	(0.06)	(0.07)		
	1496	2912	4408	(0.07)	(0.00)	(0.07)		
	. 190							

Notes: (1) Standard errors are clustered at the level of the school. (2) Child attendance data were collected during random checks. (3) The attendance at the pre-test exam determined the child enrollment at the start of the program.

Regression

$Score_{ikj} = \beta_1 + \beta_2 Treat_j + \beta_3 Pre_Writ_{ij} + \beta_4 Pre_oral_{ij} + \beta_5 Writ + \epsilon_{ijk}$

Test Score results

Mid-Test				Po	st-Test		
Took				Took			
Written	Math	Lang	Total	Written	Math	Lang	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
			A. All	Children			
0.04	0.15	0.16	0.17	0.06	0.21	0.16	0.17
(0.03)	(0.07)	(0.06)	(0.06)	(0.04)	(0.12)	(0.08)	(0.09)
1893	1893	1893	1893	1760	1760	1760	1760
			B. With	Controls			
0.02	0.13	0.13	0.14	0.05	0.17	0.13	0.15
(0.03)	(0.07)	(0.05)	(0.06)	(0.04)	(0.10)	(0.07)	(0.07)
1893	1893	1893	1893	1760	1760	1760	1760

Table 10: Estimation of Treatment Effects for the Mid- and Post-Test

Results by Pre-test score

Mi	d-Test			Pos	st-Test	
Math (2)	Lang (3)	Total (4)	Took Written (5)	Math (6)	Lang (7)	Total (8)
		C. Took P	re-Test Oral			
0.14	0.13	0.15		0.2	0.13	0.16
(0.08)	(0.06)	(0.07)		(0.14)	(0.09)	(0.10)
1550	1550	1550		1454	1454	1454
		D. Took Pr	e-Test Written			
0.19	0.28	0.25		0.28	0.28	0.25
(0.12)	(0.11)	(0.11)		(0.18)	(0.11)	(0.12)
343	343	343		306	306	306

Table 10: Estimation of Treatment Effects for the Mid- and Post-Test

Graduation to government school

	Treatment	Control	Diff
	(1)	(2)	(3)
Child Left NFE	0.44	0.36	0.08 (0.04)
Child Enrolled in Government School	0.26	0.16	0.10 (0.03)
Child Dropped Out of School	0.18	0.20	-0.02 (0.03)
N	1136	1061	2197

Table 11. Dropouts and Movement into Covernment Schools

Estimating the impact of teacher absence

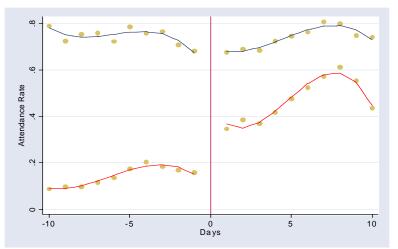
- Suppose we want to use this experiment to estimate the impact of teacher absence on test score?
- What would the strategy be?
 - Use Treatment dummy as instrument for teacher attendance
 - Wald estimate: divide effect of program on test score by effect of program on attendance
- What would the potential threat to validity of the strategy
- What do we think about the severity of this threat?

Estimating the impact of teacher absence

Table 12: Does the Random Check Predict Test Scores?						
Method:	OLS	OLS	OLS	2SLS		
Sample:	Control Schools	Treatment Schools	Treatment Schools	All Schools		
Data:	Random Check	Random Check	Photographs	Random Check		
	(1)	(2)	(3)	(4)		
	A	A. Mid-test (Sept 03-A)	pril 04)			
Took Written	0.02	0.28	0.36	0.26		
	(0.10)	(0.08)	(0.11)	(0.19)		
Total Score	0.20	0.39	0.87	1.07		
	(0.19)	(0.21)	(0.22)	(0.43)		
Ν	878	1015	1015	1893		
	1	D D	$2 \rightarrow 04$			
T 1 W		B. Post-test (Sept 03 -0	,	0.22		
Took Written	0.24	0.51	0.59	0.33		
	(0.16)	(0.15)	(0.20)	(0.22)		
Total Score	0.58	1.17	0.98	0.97		
rour score	(0.35)	(0.36)	(0.53)	(0.47)		
	(0.55)	(0.50)	(0.55)	(0.17)		
Ν	883	877	877	1760		

Monitoring or Incentives? Preliminary Evidence

- Are teachers sensitive to increased monitoring or to incentives?
- Preliminary evidence based on *Regression Discontinuity Design*
- Consider a case where treatment is assigned when the treatment is assigned based on a strict threshold:
 - Sharp RD: $W_i = \mathbb{1}[X_i > c]$
 - Fuzzy RD: $\lim_{x\downarrow c} pr(W_i = 1 | X_i = x) \neq \lim_{x\uparrow c} pr(W_i = 1 | X_i = x)$
- Identification assumption for RD: *lim_{x↓c}E[Y_i(0)|Xi = x] = lim_{x↑c}E[Y_i(0)|Xi = x]*
- Estimator: we try to approximate: *lim_{x↓c}E[Y_i|Xi = x] − lim_{x↑c}E[Y_i|Xi = x]*
 - In the sharp RD: this will be the treatment effect
 - In the fuzzy RD: we use the treshold as instrument: compute our friend the Wald estimate.


RD in the teacher case

- In practice: We try to estimate a smooth (non-parametric) function of the relationship between Y and X (here: day in the month and whether teacher works).
- We then use this to estimate the limits at the threshold, from the left and the right.
- When we switch from the last day of the month to the first day of the month:
 - A teacher who has attended 9 days or less in the rest of the month faces no incentive at the end of month t and faces incentives again at the end of month t + 1.
 - A teacher who has attended more than 10 days in the rest of the month face a Rs 50 incentives at the end of month *t* and slightly smaller at the beginning of the next month
- Graphical Evidence
- Regression:

$$W_{itm} = lpha + eta 1_m (d > 10) + \gamma F + \lambda 1_m (d > 10) * F + v_i + \mu_m \epsilon_{is},$$

Regression Discontinuity Design: Graphical Evidence

Figure 5: RDD Representation of Teacher Attendance at the Start and End of the Month

Regression Discontinuity Design: Regressions

Table 5: Do Teachers Work More When They are "In the Money"?					
(1)	(2)	(3)	(4)		
0.19	0.12	0.46	0.39		
(0.05)	(0.06)	(0.04)	(0.03)		
0.52	0.37	0.6	0.48		
(0.04)	(0.05)	(0.03)	(0.01)		
-0.19	-0.12	-0.34	-0.3		
(0.06)	(0.06)	(0.04)	(0.02)		
2813	2813	27501	27501		
0.06	0.22	0.08	0.16		
1st and last	1st and last	1st 10 and last	1st 10 and last		
day of month	day of month	10 days of	10 days of		
2	2	month	month		
		Х	Х		
	Х		Х		
	Х		Х		
Х		Х			
	(1) 0.19 (0.05) 0.52 (0.04) -0.19 (0.06) 2813 0.06 1st and last day of month	(1) (2) 0.19 0.12 (0.05) (0.06) 0.52 0.37 (0.04) (0.05) -0.19 -0.12 (0.06) (0.06) 2813 2813 0.06 0.22 1st and last 1st and last day of month day of month X X	(1) (2) (3) 0.19 0.12 0.46 (0.05) (0.06) (0.04) 0.52 0.37 0.6 (0.04) (0.05) (0.03) -0.19 -0.12 -0.34 (0.06) (0.04) 2813 27501 0.06 0.22 0.08 1st and last 1st 10 and last 1st and last 1st and last 1st 10 days of month X X X X X		

Table 5 : Do Teachers Work More When They are "In the Money"?

The Model

- Each day, a teacher chooses whether or not to attend school, by comparing the value of attending school to that of staying home or doing something else.
- State space s = (t, d), where t is the current time and d is the days worked previously in the current month.
- Payoffs:
 - If the teacher does not attend school: $\mu + \epsilon_t$
 - Payoff of attending school is calculated at the end of the month according to:

$$\pi(d) = 500 + \max\{0, d - 10\}$$
(2)

- T takes value between 1 and T = 25.
- Transitions: Each day, t increases by one, unless t = T, in which case it resets to t = 1. If a teacher has worked in that period d increases by one, otherwise it remains constant.

Value function

Given this payoff structure, for t < T, we can write the value function for each teacher as follows:

$$V(t,d) = \max\{\mu + \epsilon_t + EV(t+1,d), EV(t+1,d+1)\}.$$
 (3)

At time T, we have:

$$V(T, d) = \max\{\mu + \epsilon_T + \beta \pi(d) + EV(1, 0), \beta \pi(d+1) + EV(1, 0)\},$$
(4)

where β is marginal utility of income. EV(1,0) enters both side and can thus be ignored: we can solve each month independently, backwards from time T.

Identification

- Identification is constructive, and based on partitions of the state space.
- At time T, the agent faces a static decision; work if:

$$\mu + \epsilon_T + \beta \pi(d) > \beta \pi(d+1).$$
(5)

• The probability of this event is:

$$Pr(work|d,\theta) = Pr(\epsilon_T > \beta(\pi(d+1) - \pi(d)) - \mu) (6) \\ = 1.0 - \Phi(\beta(\pi(d+1) - \pi(d)) - \mu), (7)$$

Identification with iid innovation in outside option

- When d < 10, the difference between π(d + 1) and π(d) is zero, and β does not enter the equation.
- The resulting equation is:

$$Pr(work|d,\theta) = 1 - \Phi(\mu), \tag{8}$$

which is a simple probit.

- If all teachers share same μ , μ is identified by teachers who are out of the money, and then β from teachers in the money.
- $var(\epsilon)$ normalized to be equal to 1.
- If teachers have different μ model still identified by comparing different teachers with themselves over time (teacher fixed effect).

Identification with AR(1) innovation in outside option

- If ϵ is serially correlated, identification is more complicated.
- Suppose that the shock follows an AR(1) process:

$$\epsilon_t = \rho \epsilon_{t-1} + \nu_t, \tag{9}$$

- *ε*_T will be correlated with *d*, as teachers with very high draws
 on *ε*_T are more likely to be in the region where *d* < 10 if *ρ* is
 positive (the converse will be true if *ρ* is negative).
- This will bias our estimates of μ and β .

iid model, with or without fixed effect

Simply write the empirical counterpart of the maximization problem.

The log likelihood is:

$$LLH(\theta) = \sum_{i=1}^{N} \sum_{m=1}^{M_i} \sum_{t=1}^{T_m} [1(\text{work})Pr(\text{work}|t, d, \theta)]$$

$$+1(\text{not work})(1 - Pr(\text{work}|t, d, \theta)],$$

where:

$$Pr(work|t, d, \theta) = Pr(\mu + \epsilon_t + EV(t+1, d) < EV(t+1, d+1))$$

= $Pr(\epsilon_t < EV(t+1, d+1) - EV(t+1, d) - \mu)$
= $\Phi(EV(t+1, d+1) - EV(t+1, d) - \mu)$, (10)

Serial correlation

- Both estimation and identification are a little complicated...
- Use method of simulated moment: simulate work history for different parameters, and try to match a distribution of days worked at the beginning of the month.
- Can introduce heterogeneity by drawing p teacher from a distribution with high outside option, and 1 p from distribution with low outside option.

Results from the structural Model

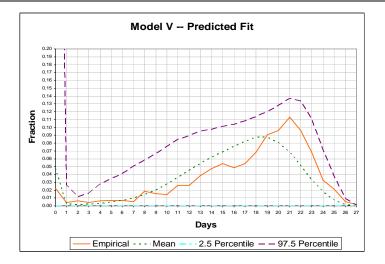

Table 6: Results from the Structural Model							
	Model I	Model II	Model III	Model IV	Model V	Model VI	
Parameter	(1)	(2)	(3)	(4)	(5)	(6)	
β	0.049	0.024	0.059	0.051	0.014	0.019	
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	
μ_1	1.55		2.315	2.063	-0.107	0.012	
	(0.013)		(0.013)	(0.012)	(0.040)	(0.028)	
ρ			0.682	0.547	0.461		
			(0.010)	(0.023)	(0.039)		
σ_1^2				0.001	0.153	0.135	
				(0.011)	(0.053)	(0.027)	
μ_2					3.616	1.165	
					(0.194)	(0.101)	
σ_2^2					0.26	0.311	
					(0.045)	(0.051)	
р					0.047	0.131	
					(0.007)	(0.015)	
Heterogeneity	None	FE	None	RC	RC	RC	

Table C. Damile from the Structurel Madel

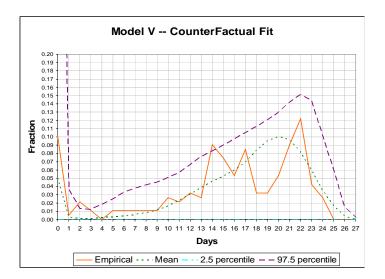
Prediction on days worked (real=20.23 days)

Table 6: Results from the Structural Model								
	Model I	Model II	Model III	Model IV	Model V	Model VI		
Parameter	(1)	(2)	(3)	(4)	(5)	(6)		
Heterogeneity	None	FE	None	RC	RC	RC		
∈ _{Bonus}	3.52	1.687	6.225	10.08	0.306	0.370		
	(1.550)	(0.098)	(0.634)	(1.249)	(0.038)	(0.029)		
∈ _{bonus_cutoff}	-75.49	-16.04	-50.22	-63.11	-1.29	-1.78		
	(6.506)	(1.264)	(2.612)	(3.395)	(0.479)	(0.449)		
Predicted Days Worked	20.50	19.00	15.30	12.15	20.23	21.36		
	(0.031)	(0.062)	(0.058)	(0.102)	(3.512)	(0.373)		
Days Worked BONUS=0	1.60	6.02	1.29	1.318	13.55	11.81		
	(0.597)	(0.234)	(0.875)	(0.863)	(5.251)	(0.669)		
Out of Sample Prediction	26.16	18.886	15.08	12.956	20.86	21.57		
	(0.059)	(0.253)	(0.635)	(0.520)	(3.793)	(0.456)		

Distribution of Days worked

Figure 6B: CounterFactual Fit From Model V

Two out of sample tests


- Prediction of the number of days worked under no incentives
 - Model predicts that teachers would work 52% of the time in control group
 - In fact they work 58%
 - Predicted difference treatment vs control is 26%, vs 21% in reality
- The impact of a change in rule.
 - Seva Mandir changed rule after experiment was over (and model was estimated!)
 - New rule: Rs 700 for 12 days of work. Increment of Rs 70 after the 13th day
 - Model does well too.
- Note that all the alternative models do rather poorly in these counterfactuals.

Results from the structural Model

	Model I	Model II	Model III	Model IV	Model V	Model VI
Parameter	(1)	(2)	(3)	(4)	(5)	(6)
Heterogeneity	None	FE	None	RC	RC	RC
∈ _{Bonus}	3.52	1.687	6.225	10.08	0.306	0.370
	(1.550)	(0.098)	(0.634)	(1.249)	(0.038)	(0.029)
∈ _{bonus_cutoff}	-75.49	-16.04	-50.22	-63.11	-1.29	-1.78
	(6.506)	(1.264)	(2.612)	(3.395)	(0.479)	(0.449)
Predicted Days Worked	20.50	19.00	15.30	12.15	20.23	21.36
	(0.031)	(0.062)	(0.058)	(0.102)	(3.512)	(0.373)
Days Worked BONUS=0	1.60	6.02	1.29	1.318	13.55	11.81
	(0.597)	(0.234)	(0.875)	(0.863)	(5.251)	(0.669)
Out of Sample Prediction	26.16	18.886	15.08	12.956	20.86	21.57
	(0.059)	(0.253)	(0.635)	(0.520)	(3.793)	(0.456)

Table 6: Results from the Structural Model

Distribution of Days worked under new rule

Results from the structural model: Lessons

- A nice set up where we can corroborate assumptions of structural model.
- Other example: Todd and Wolpin (AER). They estimate a structural model in the control group and then validate it by predicting the Treatment Control difference.
- Model incorporating both serial correlation and heterogeneity does well, other models do poorly
- It seems that entire effect of program was through financial incentives.