14.772 Pset 3 - Hsieh and Klenow (2009)

[Part I]

(a) Given the production function given in formula (3) of the paper, solve the cost minimization problem

$$P_s Y_s = \min \sum_{i=1}^{M_s} P_{si} Y_{si}$$

subject to

$$Y_s = \left(\sum_{i=1}^{M_s} Y_{si}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma-1}{\sigma}}.$$
(2)

Determine P_s .

(b) Let λ_s be the multiplier on the constraint (2). Show that the profit maximization of firm *i* in industry *s* is

$$\max_{Si,Lsi,Ksi} \left(1 - \tau_{Y_{si}}\right) \lambda_s \frac{\sigma - 1}{\sigma} \left(Y_{si}\right)^{\frac{\sigma - 1}{\sigma}} - wL_{si} - \left(1 + \tau_{Ksi}\right) RK_{si}$$

subject to $Y_{si} = A_{si} K_{si}^{\alpha_s} L_{si}^{1-\alpha_s}$.

Y

(c) Use the solution to the firm maximization problem and the expression of P_s to derive the formula (15). NOTE: In their original QJE paper, there are a couple of typos! In particular, (12) and (13) are not correct if $\overline{MRPL_s}$ and $\overline{MRPK_s}$ are defined as in their paper following (12) and (13). As a hint: define

$$\frac{1}{\overline{MRPL_s}} = \sum_{i=1}^{M_s} \left(\frac{1}{\overline{MRPL_{si}}} \frac{P_{si}Y_{si}}{P_sY_s} \right)$$

and $\overline{MRPK_s}$ similarly.

(d) There is a large literature trying to link the distortions $(\tau_{Y_{si}}, \tau_{K_{si}})$ to financial frictions individual firms face. To see the relation between these exogenous taxes and credit constraints, suppose that there are no taxes (i.e. $\tau_{Y_{si}} = \tau_{K_{si}} = 0$) but firm *i* faces a credit constraint of the form

$$wL_{si} + \zeta RK_{si} \le W\left(z_{si}, \eta\right),$$

where z_{si} is a firm characteristic (e.g. wealth), η parametrizes the financial system and ζ parametrizes how much of capital expenses can be pledged. Suppose that W is increasing in both argument, i.e. wealthy firms are less constrained and better financial system are associated with higher values of η . Derive the firm's factor demands taking prices factor prices as given. What are the firm-specific "taxes" in this framework? Suppose that $A_{si} = A$, i.e. all firms have the same productivity. Which firms face high "output-taxes $\tau_{Y_{si}}$ "? Under what conditions would a researcher conclude that $\tau_{K_{si}} = 0$?

[Part II]

This part concerns the analysis of equations in Appendix I in the paper.

- (a) Show that $TFP = \overline{TFPR} \frac{w}{P\gamma}$ in which $\overline{TFPR} = \sum_{i=1}^{M} \frac{L_i}{L} TFPR_i$
- (b) Suppose $(1 \tau_i) = a \frac{1}{4}$. Using the labor market clearing condition, show that

$$TFP = \frac{1}{M} \frac{\sum_{i=1}^{M} A_i}{L^{1-\gamma}}$$

independent of a. Give a concise interpretation why aggregate TFP is independent of a. What is the crucial assumption for this result?

14.772 Development Economics: Macroeconomics Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.