

Week 6: Cooking

AGENDA

- Where are we?
- Cooking
 - Fuels
 - Charcoal
 - Solar cookers
 - Wood & charcoal stoves
- Time for project work
- Muddy Card

COOKING IN DEVELOPING COUNTRIES

HOUSEHOLD FUEL USE SURVEY

- usage of all modern fuels increases with income except kerosene (peaks at middle income)
- in urban areas, biomass fuels less common than in rural areas, where biomass often remains common for all incomes
- income growth is not enough; infrastructure is needed
- a surprisingly large share of rural households purchase wood

Household Energy Use in Developing Countries: A Multicountry Study. (ESMAP)

© Energy Sector Management Assistance Program of The World Bank. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

ENERGY DENSITIES

Fuel	MJ/kg
wood charcoal	20-30
our charcoal	~25
bagasse, corn cobs & husks	15-20
air-dried wood	15
dung	12
heating oil, (bio)diesel, kerosene, propane	40-50

COOKING OPTIONS

Photos of many types of fuel and stoves removed due to copyright restrictions. For example: electricty, gas, wood, dung; jiko, adobe, 3 stones around open fire... See lecture video.

Estimation!

in teams of 2:

I. Energy required to boil a liter of water

2. Efficiency of doing so (ratio of energy that made the water hot to total energy)

DESIGN CONSIDERATIONS: WOOD & CHARCOAL COOKSTOVES

- thermal mass / insulation
- air flow
- volume
- robustness (water)
- cost
- longevity

- heating options
- ease of use
- emissions
- efficiency
- style
- flexibility

TOP COOKSTOVE RESOURCES

- http://cookstove.net/
- http://www.aprovecho.org

Photos of cooking with wood and dung removed due to copyright restrictions. See lecture video.

2.4 BILLION

cook with biomass

NO VIABLE ALTERNATIVE

Photos of electric power grid lines, propane canisters, solar cooker removed due to copyright restrictions. See lecture video.

THE COOKING FUEL PROBLEM

Health 1.5 million deaths from smoke inhalation

Poverty

cooking fuel 5-30% of family budget or up to 7 hours/day gathering

Environment

Increase of 6-10% deforestation rate in regions 60-98% deforested

AGRICULTURAL WASTE CHARCOAL

- Burns as cleanly as wood charcoal
- Saves trees & uses true waste: bagasse, corn cobs & husks, etc.
- Cheaper than charcoal & microfranchise opportunities
- Readily adoptable

FUEL FROM THE FIELDS (FftF) PROGRESS TO DATE

- \$200K World Bank Grant
 - 60+ Ateliers in Haiti
 - 35 trainings for 1000+ people
- \$15-30 manufacturing costs, made locally

CURRENT PROCESS

CARBONIZATION

BRIQUETTING

EVOLUTION OFTHE BRIQUETTE PRESS

Photo removed due to copyright restrictions. See lecture video.

MAKER ~ \$8,000

THE FIRST PROTOTYPE: \sim \$25

4 - 5 BRIQUETTES/MINUTE

TIME STUDY

6 - 8 BRIQUETTES/MINUTE, \$30

6 - 8 BRIQUETTES/MINUTE, \$30

"If you want to make something 10 times as cheap, remove 90% of the material." - Amy Smith

EVEN SIMPLER

RUNNING A TRAINING

Muddy Cards!

MIT OpenCourseWare http://ocw.mit.edu

EC.711 D-Lab: Energy Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.