EC.721 Wheelchair Design in Developing Countries Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2009 PROPOSED PROJECTS 1. World-wide network to connect donors local workshops

Objectives:

- Connect funds from international donors to local workshops
- Compete with large-scale donation organizations

Project details:

- Assess donation capability, user need, and develop business model
- Minimal NGO required Maximize fund transfer
- Inputs/outputs managed by donors and workshops through internet
- Workshops held accountable for confirming delivery of wheelchair

donor

5

confirmation

2009 PROPOSED PROJECTS 2. Low-cost tricycle attachment

Objective: Design a new tricycle attachment that costs ~\$50

Project details

- Low cost (~\$50)
- Stowable on wheelchair
- Optimize usage of bicycle parts
- Connects to both 3 and 4 wheelers made in partner workshops
- Gear ratio appropriate for local conditions (may use 2-speed trike from last year's class)

February 3, 2009

2009 PROPOSED PROJECTS 3. Small businesses run from wheelchairs

Objective: Identify ways disabled people can buy their own mobility aid and use it to generate an income.

Project details

- Identify small business opportunities
- Develop business models for each wheelchair-based business
- Locate resources to allow people to buy own chairs
 - Micro loans
 - Pay-over-time plan from manufacturers
- Optimize usage of available materials and processes
- Work with mechanical engineers to prototype add-ons to wheelchairs to facilitate business

February 3, 2009

2009 PROPOSED PROJECTS 4. Power-assisted tricycle

Objective: Design a human-powered/power-assisted tricycle

Project details

- Low cost (~\$300-\$500)
- Human-powered or power-assisted or combo (like a moped)
- Need to control engine and pedals at the same time
- Uses locally-available components and parts
- Can transport the user at ~10mph for 10 miles
- Uses a locally-appropriate fuel

2008 PROPOSED PROJECTS 5. Adjustable gear ratio for Kien Tuong tricycles

Objective: Enable the Kien Tuong tricycle to change gear ratios on the fly

Project details

- Current tricycle only has one gear, but great steering/geartrain combo
- Kien Tuong would like a system to shift gears on the fly
- Can change gear ratio by moving pivot position
- Cannot add significant cost
- Made from local components

Cool steering linkage

Photos courtesy of MIT M-Lab.

2008 PROPOSED PROJECTS 6. Flat-pack tricycle frame

Objective: Facilitate container shipments of tricycles

Project details

- Design a frame that can fold down flat for shipping
- Also make foldable for transport on busses
- Make frame light weight not more than current trikes
- Optimize material usage for high strength, low weight
- Make adaptable for different trike designs (Kien Tuoung, APDK)

Photos courtesy of MIT M-Lab.

2009 PROPOSED PROJECTS 7. Marketing and funding guide

Objective: Increase awareness of locally-made mobility aid products and help workshops write grants, gain funding

http://make.a.website.on.googlepages.com

Courtesy of Shirley Fung. Used with permission.

- Study other successfully marketed appropriate technology (ex. Treadle pump)
- Identify potential forms of media in Africa vs. USA
- Advertise to foreign donors
- Create materials for brochures, posters, TV, and radio
- Create websites that can be maintained by workshops (consider internet speed)
- Assemble a grant-writing guide to be used by local workshops

2009 PROPOSED PROJECTS 8. Electrically powered wheelchair/scooter

Objective: Design an appropriate electric wheelchair/scooter

Photos courtesy of MIT M-Lab.

- Use locally available motors and batteries
- Develop control system
 and user interface
- Small enough to use indoors, through doorways
- Possibly use solar power
- Low-cost (~\$300-500)

2009 PROPOSED PROJECTS 9. Sports wheelchairs and tricycles

Objective: Design new mobility aids purely for recreation

Disacare sports wheelchairs

Photo removed due to copyright restrictions.

Freedom Technology Racer

Photo removed due to copyright restrictions.

See http://www.oneoffhandcycle.com/images/riders/full/9.jpg

OneOff Titanium handcycle

Project details

- Wheelchairs for tennis or basketball
- Wheelchairs should conform to international competition standards
- Tricycles made for sport or commuting or possibly offroad
- All products made low-cost out of local materials
- Ideally produce jigs and production manuals for products

2009 PROPOSED PROJECTS 20. Your idea

Have an Idea?

 Write it down and we will include it when projects are chosen

HOMEWORK Due at beginning of next class

- Pick your top 5 projects
 - Projects will be ranked by popularity
 - Project teams formed next Tuesday 2/9
- Readings (posted on course website)
 - International Society of Prosthetics and Orthotics (ISPO): "Wheelchair" article
 - Whirlwind Wheelchair International: "Proposal to develop standards for wheelchair provision services" article
 - A. Winter: "Assessment of wheelchair technology in Tanzania"

NEXT CLASS Wheelchair relay race

PROPOSED CLASS PROJECTS FOR 2009 10. Folding 3-wheeler

Objective: Modify the popular African-made three-wheeler to collapse like a 4-wheeled wheelchair

- Design a system to fold the rear wheels in closer to the frame
- Utilize bicycle parts and other local materials
- Cannot add significant weight or manufacturing cost to the chair
- Can use in conjunction with front wheel coupling developed in last year's class.
- Has to fit in the trunk of a car or in a bus

2009 PROPOSED PROJECTS 11. Wheelchair modifications for women

Objective: Design wheelchair accessories specifically for women's needs

Project details

- Enable user to easily get down to the floor
- Carry children
- Carry supplies/ groceries/water
- Removable to reduce weight
- Low-cost (~\$20)
- Made from local components

Photos courtesy of MIT M-Lab.

2009 PROPOSED PROJECTS 12. Small business assessment plan

Objective: Improve practices and efficiency of local workshops and identify supplemental income generating activities

Project details

- Create a general assessment system to optimize local wheelchair builders for their region
- Investigate the local market clients, funders, materials, labor skill, etc.
- Determine whether to build wheelchairs locally, import from larger African manufacturers, or import from Asia
- Identify supplemental income sources from related products, such as charcoal compactor or pedal grinders

Wheelchair workshops have the capacity to produce products like pedal-powered grinders and charcoal presses

2009 PROPOSED PROJECTS 13. Curriculum to teach wheelchair prescription

Objective: Design a short course to train wheelchair prescribers

Project details

- Develop a curriculum to teach people how to prescribe wheelchairs for different disabilities
- Offer different levels of training (similar to PADI)
- Make prescriber also salesman for products
- Train prescribers so they can be posted far away from workshop, as to utilize central manufacturing
- Write for people with english as a second language
- Class to be taught by wheelchair technicians

2009 PROPOSED PROJECTS 14. Creating testing methods and instruments

Objective: Design protocols and instruments to test the appropriateness of wheelchairs in developing countries

Double drum tester

Photo removed due to copyright restrictions.

http://www.rercwm.pitt.edu/RERCWM_Res/RERC_Res_DDT/ RERC_Res_DDT_D1/DDT_D1.html

Imported wheelchair Photo courtesy of MIT M-Lab.

Project details

- All tests have to low-cost and made from local materials
- Modify double-drum test for rough-road testing
- Test max user weight for chairs
- Use tests to determine appropriateness of donated chairs
- ISO certify locally made chairs
- Test bearings for life under harsh conditions (wet, mud, sand, dust, etc)

2009 PROPOSED PROJECTS 15. Organizational and logistical improvements

Objective: Optimize the logistics of workshop production and improve product quality

Stock material at APDK

Photos courtesy of MIT M-Lab.

- Track manufacturing quality and customer satisfaction by using serial numbers to trace product defects back to the workers
- Implement a computerized stock room and purchasing system
- Purchase in bulk to lower unit cost of components
- Outsource fabrication of some components to specialty shops
- Apply lean manufacturing techniques

2009 PROPOSED PROJECTS 16. Optimized tricycle biomechanics

Objective: Improve functionality, comfort, and efficiency of tricycles.

Aligned or opposed hand cranks?

WDDC 2-Speed design Photos courtesy of MIT M-Lab.

Project details

- Upper body motion with highest sustainable power output
- Gear ratio for different terrains
- Best configuration of hand grips
- Best rake angle for stability vs. comfort
- Appropriate, supportive seating
- Simplified production

2009 PROPOSED PROJECTS 17. Component and material optimization

Objective: Find best components and materials to reduce weight, improve serviceability, extend life, and lower cost.

Project details

- How can bicycle components be used more effectively in wheelchairs?
- What components are available
- How could they be used differently
- Life and durability
- Cost savings of replacement

barrel-bike hub concept

February 3, 2009

Images courtesy of MIT M-Lab.

2009 PROPOSED PROJECTS 18. Welding jig and symmetric frame design

Objective: Decrease manufacturing time with better, more repeatable welding jigs and simplified frame designs.

Current Whirlwind jig with separate left and right sides

Photos courtesy of MIT M-Lab.

- Assess current process time
 and manufacturing steps
- Identify bottlenecks in production
- Find unnecessary frame complexity
- Tolerance stack-up and mitigation
- Simplified frame prototype
- Jig design prototype
- Process plan for making frames

2009 PROPOSED PROJECTS 19. Tricycle frame jig and production manual

Objective: Design jig to hold tricycle components during welding and make a production manual to teach other workshops to make tricycles.

Tricycle frame production, APDK Nairobi

Photos courtesy of MIT M-Lab.

- Understand tricycle building
 process
- Design to avoid tolerance stack-up mitigation
- Accommodate bending errors
- Calculate process complexity and time
- Produce a simplified frame prototype
- Produce a jig design prototype

2009 PROPOSED PROJECTS 20. Workshop manual

Objective: Teach safe manufacturing practices

Mechanical Principles of Wheelchair Design

Amos Winter Graduate Student, Department of Mechanical Engineering Massachusetts Institute of Technology

> **Ralf Hotchkiss** Chief Engineer Whiriwind Wheelchair International

This manual is free to anyone. Please photocopy and distribute.

Example: Manual to teach mechanical engineering principles

- Consider language, literacy, and cost of printing
- Demonstrate unsafe practices in workshop
- Describe manufacturing processes
- Explain tolerance stack-up mitigation, bending errors
- Introduce lean
 manufacturing principles

2009 PROPOSED PROJECTS 21. Brake design

Objective: Improve reliability and safety of breaks

- Examine existing bike braking systems
- Calculate stopping requirements
- Understand road surfaces
- Consider manufacturing cost/complexity and tire wear
- Prototype brake for both tricycles and wheelchairs