
Photovoltaic Solar Energy Systems - The Solar Resource

 Solar Geometry 

We derive the machinery for calculating the flux onto an arbitrarily oriented, photovoltaic array 
from the daily and seasonal motion of the earth about its axis and about the sun. For this we intro­
duce two sets of measures of the sun’s position relative to the earth. One set gives the sun’s posi­
tion relative to a coordinate frame fixed to the earth with one axis directed overhead, another 
orthogonal axis directed toward the horizon - the I,j coordinate frame in the figure below. The other 
set is fixed at the same point on the earth but it has one axis directed to the polar, north star, 
another orthogonal axis directed parallel to the equator - the I,J coordinate frame shown in the fig­
ure below. 
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We have:

i = ( sin λ) I + (cos λ)J 

j = (–cos λ) I + ( sin λ) J where λ is the latitude of the site. 

k = K 

The i,j, coordinate reference frame with the i 
axis pointing directly overhead, and the j axis 

to the sun 

az

z 

i 
pointing toward the horizon in the direction of the 
sun’s position at solar noon (when it reaches its 
highest point in the sky) is shown at the right. s 

z is the zenith angle, and az the azimuth jangle. A unit vector pointing toward the sun is then 
given by: -k 

s = (cos z)i + ( sin z cos a ) j – ( sin z sin a )kz z 
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The second coordinate system fixed so that one axis 
continually points to the north star and another in the 
direction of the sun’s position at solar noon, lying in 
the plane of the equator follows. 

s = ( sin δ)I + (cos δcos ω)J – (cos δsin ω)K 

Equating these two expressions for s, we obtain, 
using the first set of equations relating i to I, j to  J,  
k to K: 

cos z = ( sin δ)(sin λ) + ( cos δ)(cos λ) cos ω 
( sin z)(cos a ) = (cos δ)(cos ω)sin λ – (cos λ) sin δz 

( sin z) sin a = cos δ(sin ω)z 

If one specifies the day of the year, this fixes the declination δ, according to 

284 + nδ = 23.45 ⋅ sin  360 ⋅ ------------------ 365 

Given also the latitude λ at which the local coordinate frame is fixed to the surface of the earth, 
then the first of these defines how the zenith angular distance varies from sunrise to sunset — as 
ω, the hour angle, varies over the course of the day. The length of the day is defined by this rela­
tionship since, at sunrise and sunset, the zenith distance is 90o or π/2, i.e, the sun is at the horizon. 

Setting cos z = cos 90 = 0, this gives: 

ωsunrise/sunset = ωss = arcos[-tan δ tan λ] 

The remaining equations give the value of the azimuth angle, az as a function of the hour 
angle. 

But the first equation for cos z gives us something more, namely, the instantaneous solar flux 
onto the horizontal plane. If we think of the sun’s radiation, or solar insolation, as a fluid streaming 
toward earth from the sun, then the flow through or across a plane area whose normal is oriented 
at some angle to the direction of the flow is proportional to the cosine of that angle. 

Solar Flux 
A 

z 
A cos z 

i 

An alternate interpretation is to think of the flux onto the array as the flow normal to the area A 
which again is given by Acos z. 
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Now the expression for cos z is of the form

 cos z = C1 + C2 cos ω 
which plots as a cosine shifted up or down depending upon the sign of C1 which depends, in turn, 
on the sign of the declination. Note that C2 is always positive.

 Flux onto a tilted array. 

We can do better than placing our solar array 

γ 

normal, nc 
β 

ion the horizontal, at our latitude at any rate. To 
find the flux on a tilted array we consider the orien­
tation of the array relative to our local coordinate 
frame: s

to the sun 
In this, β is the array tilt, and γ is, well lets just 

call it γ. The unit normal to the tilted array can be 
jwritten: 

nc = (cos β) i + (sin β)(cos γ) j - (sing β)(sin γ) k -k 

If the array is south facing, usually the case for a fixed array (no tracking), this simplifies to:

 nc = (cos β) i + (sin β)j 

Now the flux onto the array is proportional to the cosine of the angle between the unit vector to 
the sun, s, and the unit normal to the array, nc. But this is given by the scalar product of these two 
vectors. This becomes, using all of the machinery presented above: 

cos(nc,s) = sin δ sin(λ−β) + cos δ cos (λ−β) cos ω 

Which again, for prescribed declination, latitude and array inclination is a shifted cosine.

 Monthly average daily radiation and other awkward expressions: 

Say you are in outer space, in earth orbit, and your solar array is horizontal — that is, lying on 
the surface of the sphere whose radius is equal to the radius of your orbit. There is nothing 
between you and the sun, not even a wisp of aether to attenuate the solar radiation. The flux up 
there, what we call the extra-terrestial flux is 

φext = 1.350 kw/m2 

Over the course of a day in space, the total solar radiation flux impinging upon your horizontal 
array will be given by 

ωss 

242φext ∫  cos z ⋅ ------ dω ≡Hext2π 
0 

With cosz given as before, this integrates to: 

24
Hext = π 

-φext cos δcos λ[ sin ω – ω cos ω ]ss ss ss 
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Say you are still outside the earth’s atmosphere and 
your solar array is tilted up an angle β to the horizontal, 

j 

s 
normal, nc 

β 
to the sun 

β 

i 
but is south facing i.e., γ =0. 

Then the cosine of the angle between a unit vector 
perpendicular to the array and a unit vector towards the 
sun is as above: 

cos(nc,s) = sin δ sin(λ−β) + cos δ cos (λ−β) cos ω 
which, again, is a function of the hour angle, or time of 
day. 

Integrating this over the course of a day, from sunrise to sunset gives 

24β -----Hext( )  = π 
-φext cos δcos (λ – β)[ sin ω' – ω ' cos ω ']ss ss ss 

where here we assume sun set on the panel before the horizontal. That is setting cos(nc,s) = cos 
90 = 0, gives: 

–ω' = acos [–tan δ ⋅ tan (λ β)]ss 

Some Clearness Indexes 

The “clearness index” KT, is a number derived from experience, from measured, total daily 
solar insolation values for a particular location. It is defined as the ratio of monthly average, daily 
total horizontal insolation on the earth’s surface H to the monthly average, daily total horizontal 
insolation outside the atmosphere, in outer space, Hext. 

KT  = H / Hext 

The table shows values for clearness index at various locations.

Month Boston λ=42.1 Madison λ=42.1 Albuquerque λ=35 Miami λ=35 

Jan 0.41 0.44 0.64 0.51 

Feb 0.45 0.49 0.67 0.54 

Mar 0.45 0.50 0.68 0.56 

Apr 0.44 0.47 0.71 0.57 

May 0.48 0.51 0.73 0.53 

June 0.52 0.53 0.74 0.48 

July 0.53 0.55 0.70 0.50 

Aug 0.49 0.55 0.70 0.49 

Sept 0.49 0.52 0.71 0.49 

Oct 0.47 0.50 0.71 0.52 

Nov 0.42 0.39 0.67 0.52 

Dec 0.42 0.38 0.63 0.52 

 The Contribution of Diffuse Radiation at Tilt. 

With the clearness index for a site, and our calculation of the extraterrestial radiation/energy 
impinging onto the horizontal in space, we can estimate the monthly average, daily total solar inso­
lation on a horizontal array at the earth’s surface at the site. The “horizontal” clearness index is a 
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number that is computed from the collection of field data at each site. As such it includes the 
effects of vagaries of the weather, diffuse and reflected, as well as direct, radiation on the total 
daily flux onto the horizontal. If we set the array at a tilt angle up from the horizontal (the beta 
above), we must take account of the diffuse (and reflected) radiation in another way. In other 
words, we need to construct a site-specific Kt for the tilted surface. 

The method we present relates the monthly-average daily total radiation incident on an 
inclined surface to the monthly-average daily radiation on a horizontal plane at the earth’s surface 
by a factor R. The method is a first approximation. It was originally developed by Liu and Jordan1, 
evaluated by Klein3, then subsequently improved and refined by Klein and Theilacker4. We
present the method in its first approximation form. 

Hβ = R H⋅ 
where


Hd
 Hd    1 cos + β ρ  1 – cos β⋅ Rb + ------- ⋅  --------------------- + ⋅ --------------------­R = 1 –     
        2   2 H H 

The first of these states that the monthly-average, daily total radiation incident on a surface 
inclined at an angle β is given by the product of two factors: the monthly-average, daily total radia­
tion incident on a horizontal surface at the earth’s surface and a coefficient R defined by the next 
equation. So far nothing ventured, nothing much gained. 

HdThe factor R is a bit more interesting. In this,      is the ratio of the monthly-average,     H 
daily diffuse radiation to the monthly average, monthly-average, daily total radiation incident on a 
horizontal surface - to be determined below - and Rb is the ratio of the monthly-average beam radi­
ation on the tilted surface to that on a horizontal surface. The first ratio is constructed from experi­
mental field data, the second derives from our earlier geometric analysis. The parameter ρ is a 
measure of the site’s surface reflectivity and is best obtained through measurement. 

But first, consider the case when β, the tilt angle is zero, i.e., the surface is horizontal. In this 
case, our expression for R comes to R = Rb which is as it should be. So what is going on here is, 
in the first term of R, we “back out” the contribution of the diffuse from the total incident on the hor­
izontal - so that the first term represents just the direct beam contribution to the horizontal -then 
add it back in as a diffuse contribution in the second term. 

Rb is then “estimated” to be the ratio of total, daily, direct extraterrestial radiation on the tilted 
surface, what we labeled Hext(β), to that on a horizontal surface, Hext, so we have: 

β –Hext( )  cos δcos (λ  β)[ sin ω' – ω ' cos ω ' ]ss ss ssRb = ------------------- = ----------------------------------------------------------------------------------------------
Hext cos δcos λ[ sin ω – ω cos ω ]ss ss ss 

In this w’ss is the sunset hour on the tilted array while wss, without the prime, is the sunset hour on 
the horizontal. 

We still must reckon with the diffuse contribution. As noted, for this we rely upon exerimental 
data.Two curve fits (at least) have been proposed. We show them both in graphical and algebraic 
form below: 

1. Liu, B.Y.H & Jordan, R.C., “The interrelationship and characteristic distribution of direct, diffuse, and total solar 
radiation”, Solar Energy 4(3) 1960. 

2. Liu, B.Y.H & Jordan, R.C., “Daily insolation on surfaces tilted toward the equator”, Trans. ASHRAE 526-541, 1962. 

3. Klein, S.A. “Calculation of Monthly Average Insolation on Tilted Surfaces”, Solar Energy, vol. 19, 325-329, 1977. 

4. Klein. S.A. & Theilacker, J.C., “An Algorithm for Calculating Monthly-Average Radiation on Inclined Surfaces”, 
Jour. of Solar Energy Engineering, vol. 103, 29-33, 1981. 
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