
MIT OpenCourseWare 
http://ocw.mit.edu 

6.00 Introduction to Computer Science and Programming 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.00: Introduction to Computer Science and Programming 

Problem Set 11: Simulating Robots 
Handed out: Thursday, November 13, 2008. 
Due: Thursday, November 20, 2008. 

Introduction 

In this problem set you will practice designing a simulation and implementing a program that uses 
classes. 

Workload 
Please let us know how long you spend on each problem. We want to be careful not to overload you by 
giving out problems that take longer than we anticipated. 

In this pset, there is quite a bit to read and understand, but most of the problems do not involve 
writing much code. 

Collaboration 
You may work with other students. However, each student should write up and hand in his or her 
assignment separately. Be sure to indicate with whom you have worked. For further detail, please 
review the collaboration policy as stated in the syllabus. 

Getting Started 

Download the following files and save them in a single directory: 

ps11.py, the skeleton you will fill in 
ps11_visualize.py, a nifty library we are providing (to be explained later) 

Installing pylab 

You will need to install some libraries to create plots for Problems #4 and #6 of this problem set. 

Installing pylab on Windows 

1.	 Check the version of Python on your machine (in IDLE, choose Help->About IDLE) and make sure 
you are running Python 2.5. 

2.	 Download and install numpy. 
3.	 Download and install Matplotlib. 

On Windows Vista, you may get an error during Matplotlib installation that says something to the 
effect of "could not create key." You should run (or re-run) the installer by right-clicking on it and 
selecting "Run as administrator." (If you don't, Matplotlib will still work, but no entry will appear to 
allow you to uninstall it until you run the setup program as an administrator.) 

Installing pylab on Mac OS X 

1.	 Check the version of Python on your machine (in IDLE, choose Help->About IDLE) and make sure 
you are running Python 2.5. 

2.	 Download and install python-dateutil, pytz, and numpy. 
3.	 Download and install Matplotlib. 

Using pylab on Athena 
If you are working on Athena, find an machine that runs Athena Linux (that is, not Solaris— the 
Solaris machines are purple and say "Sun"). In a command prompt window, make sure that the shell 
you're using is a bash shell; you can check this by entering echo $SHELL and verifying you see a string 

http://sourceforge.net/project/downloading.php?groupname=numpy&filename=numpy-1.2.1-win32-superpack-python2.5.exe&use_mirror=voxel
http://sourceforge.net/project/downloading.php?groupname=matplotlib&filename=matplotlib-0.98.3.win32-py2.5.exe&use_mirror=voxel
http://pythonmac.org/packages/py25-fat/dmg/python_dateutil-1.1-py2.5-macosx10.4.dmg
http://pythonmac.org/packages/py25-fat/dmg/pytz-2006g-py2.5-macosx10.4.dmg
http://pythonmac.org/packages/py25-fat/dmg/numpy-1.0.4-py2.5-macosx10.4-2007-11-07.dmg
http:ps11.py
http:ps11_visualize.py
http://pythonmac.org/packages/py25-fat/dmg/matplotlib-0.91.1-py2.5-macosx10.4-2007-12-04.dmg


containing bash (and in particular not csh); if you don't, then run bash. Then run the following 
commands to launch IDLE: 

$ . ~6.00/arch/share/bin/setup
$ idle & 

You must follow these steps each time you start working on an Athena machine. 

Simulation Overview 

iRobot is a company (started by MIT alumni and faculty) that sells the Roomba vacuuming robot (watch 
one of the product videos to see these robots in action). Roomba robots move about a floor, cleaning 
the area they pass over. You will design a simulation to estimate how much time a group of 
Roomba-like robots will take to clean the floor of a room. 

The following simplified model of a single robot moving in a square 5x5 room should give you some 
intuition about the system we are simulating. 

The robot starts out at some random position in the room, and with a random direction of motion. The 
illustrations below show the robot's position (indicated by a black dot) as well as its direction (indicated 
by the direction of the red arrowhead). 

Time t = 0: The robot 
starts at the position (2.1, 
2.2) with an angle of 205 
degrees (measured 
clockwise from "north"). The 
tile that it is on is now 
clean. 

t = 1: The robot has moved 
1 unit in the direction it was 
facing, to the position (1.7, 
1.3), cleaning another tile. 

t = 2: The robot has moved 
1 unit in the same direction 
(205 degrees from north), 
to the position (1.2, 0.4), 
cleaning another tile. 

t = 3: The robot could not 
have moved another unit in 

t = 4: The robot moves 
along its new heading to the 

http://store.irobot.com/home/index.jsp


the same direction without position (0.3, 0.7), cleaning 
hitting the wall, so instead it another tile. 
turns to face in a new, 
random direction, 287 
degrees. 

Simulation Details 
Here are additional details about the simulation model. Read these carefully. 

Multiple robots. In general, there are N > 0 robots in the room, where N is given. For 
simplicity, assume that robots are points and can pass through each other or occupy the same 
point without interfering. 
The room. The room is rectangular with some integer width w and height h, which are given. 
Initially the entire floor is dirty. A robot cannot pass through the walls of the room. A robot may 
not move to a point outside the room. 
Robot motion rules: 

Each robot has a position inside the room. We'll represent the position using coordinates 
(x, y) which are real numbers satisfying 0 ≤ x < w and 0 ≤ y < h. In our program we'll use 
instances of the Position class to store these coordinates. 
A robot has a direction of motion. We'll represent the direction using an integer d satisfying 
0 ≤ d < 360, which gives an angle in degrees. 
All robots move at the same speed s, which is given and is constant throughout the 
simulation. Every time-step, a robot moves in its direction of motion by s units. 
When a robot hits a wall, it picks a new direction at random. The robot continues in that 
direction until it reaches another wall. 

Tiles. You will need to keep track of which parts of the floor have been cleaned by the robot(s). 
We will divide the area of the room into 1x1 tiles (there will be w * h such tiles). When a robot's 
location is anywhere in a tile, we will consider the entire tile to be cleaned (as in the pictures 
above). By convention, we will refer to the tiles using ordered pairs of integers: (0, 0), (0, 1), ..., 
(0, h-1), (1, 0), (1, 1), ..., (w-1, h-1). 
Termination. The simulation ends when a specified fraction of the tiles in the room have been 
cleaned. 

If you find any places above where the specification of the simulation dynamics seems ambiguous, it is 
up to you to make a reasonable decision about how your program/model will behave, and document 
that decision in your code. 

Part I: The RectangularRoom and BaseRobot classes 

You will need to design two classes to keep track of which parts of the room have been cleaned as well 
as the position and direction of each robot. 

In ps11.py, we've provided skeletons for the following two classes, which you will fill in in Problem #1: 

RectangularRoom 
Represents the space to be cleaned and keeps track of which tiles have been cleaned. 

BaseRobot 
Stores the position and heading of a robot. 

We've also provided a complete implementation of the following class: 

Position 
Stores the x- and y-coordinates of a robot in a room. 

Read ps11.py carefully before starting, so that you understand the provided code and its 
capabilities. 

http:ps11.py


Problem #1 

Complete the RectangularRoom and BaseRobot classes by implementing their methods 
in ps11.py according to the given specifications. 

For the RectangularRoom class, you will need to decide what fields you will use and how the 
following operations are to be performed: 

Initializing the object 
Marking an appropriate tile as cleaned when a robot moves to a given position 
Determining if a given tile has been cleaned 
Determining how many tiles there are in the room 
Determining how many cleaned tiles there are in the room 
Getting a random position in the room 
Determining if a given position is in the room 

For the BaseRobot class, you will need to decide what fields you will use and how the following 
operations are to be performed: 

Initializing the object 
Accessing the robot's position 
Accessing the robot's direction 
Setting the robot's position 
Setting the robot's direction 

(Although this problem has many parts, it should not take long once you have chosen how you 
wish to represent your data. For reasonable representations, a majority of the methods will 
require only one line of code.) 

Part II: Creating and using the simulator 

Problem #2 

Each robot must also have some code that tells it how to move about a room, which will go in a 
method called updatePositionAndClean. 

Ordinarily we would consider putting all the robot's methods in a single class. However, later in 
this problem set we'll consider robots with alternate movement strategies, to be implemented as 
different classes with the same interface. These classes will have a different implementation of 
updatePositionAndClean but are for the most part the same as the original robots. Therefore, we'd 
like to use inheritance to reduce the amount of duplicated code. 

We have already refactored the robot code for you into two classes: the BaseRobot class you 
completed above (which contains general robot code), and a Robot class inheriting from it (which 
contains its own movement strategy). 

Complete the updatePositionAndClean method of Robot to simulate the motion of the robot 
after a single time-step (as described above in the simulation dynamics). 

class Robot(BaseRobot):

"""

 A Robot is a BaseRobot with the standard movement strategy.


 At each time-step, a Robot attempts to move in its current direction; when
it hits a wall, it chooses a new direction randomly.
""" 



 def updatePositionAndClean(self):

"""

 Simulate the passage of a single time-step.


 Move the robot to a new position and mark the tile it is on as having

been cleaned.

 """


Hint: You may find the getNewPosition function in the Position class helpful. 

Problem #3 



In this problem you will write code that runs a complete robot simulation. 

In each trial, the objective is to gather data on how many time-steps are needed before a 
specified fraction of the room has been cleaned. Implement the following function: 

def runSimulation(num_robots, speed, width, height, min_coverage, num_trials,
robot_type, visualize):

"""
 Runs NUM_TRIALS trials of the simulation and returns a list of
 lists, one per trial. The list for a trial has an element for each
timestep of that trial, the value of which is the percentage of
the room that is clean after that timestep. Each trial stops when
MIN_COVERAGE of the room is clean.

 The simulation is run with NUM_ROBOTS robots of type ROBOT_TYPE, each with
speed SPEED, in a room of dimensions WIDTH x HEIGHT.

 Visualization is turned on when boolean VISUALIZE is set to True.

 """


The first six parameters should be self-explanatory. For the time being, you should pass in Robot 
for the robot_type parameter, like so: 

avg = runSimulation(10, 1.0, 15, 20, 0.8, 30, Robot, False) 

Then, in runSimulation you should use robot_type(...) instead of Robot(...) whenever you wish 
to instantiate a robot. (This will allow us to easily adapt the simulation to run with different robot 
implementations, which you'll encounter in Problem #5.) 

For now, set the visualize parameter to be False; you can change it to True when adding the 
visualization code in the latter part of this problem. 

Feel free to write whatever helper functions you wish, but the file you submit should not have 
code outside these helper functions and the specified classes and functions. 

For your reference, here are some approximate room cleaning times. These times are with a robot 
speed of 1.0. 

One robot takes around 150 clock ticks to completely clean a 5x5 room. 
One robot takes around 190 clock ticks to clean 75% of a 10x10 room. 
One robot takes around 310 clock ticks to clean 90% of a 10x10 room. 
One robot takes around 3250 clock ticks to completely clean a 20x20 room. 

(These are only intended as guidelines. Depending on the exact details of your implementation, 
you may get times different from ours.) 

You should also check your simulation's output for speeds other than 1.0. One way to do this is to 
take the above test cases, change the speeds, and make sure the results are sensible. 

Visualizing robots 
We've provided some code to generate animations of your robots as they go about cleaning a 
room. These animations can also help you debug your simulation by helping you to visually 
determine when things are going wrong. 

Download ps11_visualize.py and save it in the same directory as your ps11.py. Add the following 
line to the top of your ps11.py: 

import ps11_visualize 

Here's how to run the visualization: 

http:ps11.py


1. In your simulation, at the beginning of a trial, do the following to start an animation: 

anim = ps11_visualize.RobotVisualization(num_robots, width, height) 

(Pass in parameters appropriate to the trial, of course.) This will open a new window to 
display the animation and draw a picture of the room. 

2. Then, on each time-step, do the following to draw a new frame of the animation: 

anim.update(room, robots) 

Pass in a RectangularRoom object, representing the current state of the room, and a list of 
the robots in the room. 

3. When the trial is over, call the following method: 

anim.done() 

Note that at this point, the program will wait for the user to close the animation window 
before continuing on to the next trial. 

The resulting animation will look like this: 

The visualization code slows down your simulation so that the animation doesn't zip by too fast 
(by default, it shows 5 time-steps every second). Naturally, you will want to avoid running the 
animation code if you are trying to run many trials at once (for example, when you are running 
the full simulation). 



For purposes of debugging your simulation, you can slow down the animation even further. You 
can do this by changing the call to RobotVisualization, as follows: 

anim = ps11_visualize.RobotVisualization(num_robots, width, height, delay) 

The parameter delay specifies how many seconds the program should pause between frames. The 
default is 0.2 (that is, 5 frames per second). You can raise this value to make the animation 
slower. 

Don't forget to set the visualize parameter of runSimulation to True to see the animation. 

Problem #4 

Now, use your simulation to answer some questions about the robots' performance. 

For the questions below, write code which will generate a plot using pylab. Put your 
code inside the corresponding skeleton functions in ps11.py (showPlot1, showPlot2, 
showPlot3, and showPlot4, respectively). 

Each plot should have a title, descriptive labels on both axes, and a legend (if applicable). Assume 
the robots are moving at a speed of 1.0. 

1.	 How long does it take a single robot to clean 75% of each of the following types of rooms: 
5x5, 10x10, 15x15, 20x20, 25x25? Output a figure that plots the mean time (on the Y-axis) 
against the area of the room. 

2.	 How long does it take to clean 75% of a 25x25 room with each of 1-10 robots? Output a 
figure that plots the mean time (on the Y-axis) against the number of robots. 

3.	 How long does it take two robots to clean 75% of rooms with dimensions 20x20, 25x16, 
40x10, 50x8, 80x5, and 100x4? (Notice that the rooms have the same area.) Output a 
figure that plots the mean time (on the Y-axis) against the ratio of width to height. 

4.	 How does the time it takes to clean a 25x25 room vary as min_coverage changes? Output a 
figure that plots mean time (on the Y-axis) against the percentage cleaned, for each of 1-5 
robots. Your plot will have multiple curves. 

Experiment with the number of trials. For your plots, use a number of trials which is large enough 
that you think the output is reliable. 

Hint: for plots 1-3, it may be useful to write a helper function that computes the average length 
of all the lists in the list of lists returned by runSimulation. For plot 4, you may find the function 
we have provided, computeMeans, to be helpful. 

Here is an example of a good plot: 



Problem #5 

iRobot is testing out a new robot design. The proposed new robots differ in that they change 
direction randomly after every time step, rather than just when they run into walls. You have 
been asked to design a simulation to determine what effect, if any, this change has on room 
cleaning times. 

Write a new class RandomWalkRobot which inherits from BaseRobot (like Robot) but 
implements the new movement strategy. RandomWalkRobot should have the same interface as 
Robot. 

Test out your new class. Perform a single trial with the new RandomWalkRobot implementation and 
watch the visualization to make sure it is doing the right thing. Once you are satisfied, you can 
call runSimulation again, passing RandomWalkRobot instead of Robot. 

Problem #6 

Generate an appropriate plot (of your own design) that compares the performance of 
the two types of robots. Add your code to showPlot5(). As always, your plot should have an 
appropriate title, axis labels, and (if applicable) legend. 

Within comments in showPlot5, comment briefly on how the two types of robots compare. 

Hand-In Procedure 

1. Save 
Save your code in a single file, named ps11.py. Remember, you should not have any code outside 
of the specified classes and functions, aside from any helper functions you may have written. 

2. Test 

http:ps11.py


Run your file to make sure it has no syntax errors. Run your plotting functions to make sure they 
produce plots when run. Test your runSimulation to make sure that it still works with both the Robot 
and RandomWalkRobot classes. (It's common to accidentally break code while refactoring, which is one 
reason that testing is really important!) 

3. Time and Collaboration Info 
At the start of your file, in a comment, write down the number of hours (roughly) you spent on the 
problems, and the names of the people you collaborated with. For example: 

# Problem Set 11 
# Name: Jane Lee 
# Collaborators: John Doe 
# Time: 3:30 
# 
... your code goes here ... 


