
MIT OpenCourseWare 
http://ocw.mit.edu 

6.00 Introduction to Computer Science and Programming, Fall 2008 

Please use the following citation format: 

Eric Grimson and John Guttag, 6.00 Introduction to Computer Science 
and Programming, Fall 2008. (Massachusetts Institute of Technology: 
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu 

6.00 Introduction to Computer Science and Programming, Fall 2008 
Transcript – Lecture 3 

The following content is provided under a Creative Commons license. Your support 
will help MIT OpenCourseware continue to offer high-quality educational resources 
for free. To make a donation, or view additional materials from hundreds of MIT 
courses, visit MIT OpenCourseware at ocw.mit.edu. 

PROFESSOR ERIC GRIMSON: All right, I'm going to start today by talking about, so 
what have we been doing? What have we actually done over the last few lectures? 
And I want to suggest that what we've done is, we've outlined a lot of the basic 
elements of programming. A lot of the basic elements we're going to need to write 
code. And I want to just highlight it for you because we're going to come back and 
look at it. 

So I'm going to suggest that we've looked at three different kinds of things. We've 
talked about data, we've talked about operations, and we've talked about commands 
or statements. All right? 

Data's what we expect. It's our way of representing fundamentally the kinds of 
information we want to move around. And here, I'm going to suggest we've seen 
numbers, we've seen strings, and I'm going to add Booleans here as well. They're a 
third kind of value that we saw when we started talking about conditions. 

We saw, associated with that primitive data, we have ways of taking data in and 
creating new kinds of data out, or new versions of data out, so we have operations. 
Things like addition and multiplication, which we saw not only apply to numbers, but 
we can use them on things like strings and we're going to come back to them again. 
Can't use them on Booleans, they have a different set of things. They do things like 
AND, and OR. And of course there's a bunch of other ones in there, I'm not going to 
put them all up, but we're building up a little collection, if you like, of those 
operations. 

And then the main thing we've done is, we've talked about commands. So I'm going 
to suggest we've seen now four different things. We've seen assignment, how to bind 
a name to a value. We've seen input and output. Print for output, for example, and 
raw input for input. We've seen conditionals, or said another way, branches, ways of 
changing the flow of control through that sequence of instructions we're building up. 
And the last thing we added were loop mechanisms. And here we saw, wow. It's the 
first example we've seen. 

So what've we done so far? Now, interestingly, this set of instructions was actually 
quite powerful, and we're going to come back to that later on, in terms of what we 
can do with it, but what we've really done is, given that basis, we're now talking 
about, how do we write common patterns of code, how do we write things that solve 
particular kinds of problems. So what I want you to do, is to keep in mind, those are 
the bases, we ought to be able to do a lot with that bases, but what we're really 

http://ocw.mit.edu
http:ocw.mit.edu


interested in is not filling out a whole bunch of other things in here, but how do we 
put them together into common templates. And we're going to do that today. 

Second thing we've been doing, I want to highlight for you is, we've along the way, 
mostly just verbally rather than writing it down, but we've been talking about good 
style. Good programming style. All right? Things that we ought to do, as you put 
these pieces together, in order to give you really good code. And you should be 
collecting those together. 

Give you some examples. What have we talked about? We've talked about things like 
using comments to highlight what you're doing in the code, to make it easier to 
debug. We talked about type discipline, the notion that you should check the types of 
operands before you apply operators to them, to make sure that they're what the 
code is expecting. We talked about descriptive use of good variable names, as a way, 
in essence, of documenting your code. The fourth one we talked about was this idea 
of testing all possible branches through a piece of code, if it's got conditionals in it, 
to make sure that every possible input is going to give you an output that you 
actually want to see. 

So, you know, you can start writing your own, kind of, Miss Manners book, if you 
like, I mean, are what are good programming, you know-- I wonder what you'd call 
them, John, good programming hygiene? Good programming style? Good 
programming practices?-- Things that you want to do to write good code. 

OK. What we're going to do today is, we're going to start now building up, beyond 
just these pieces, although they're valuable, to start creating two things: one, 
common patterns of code that tackle certain classes of problems, and secondly we're 
going to talk about tools you can use to help understand those pieces of things. 

OK. So last time around, we talked about, or introduced if you like, iterative 
programs. And I want to generalize that for a second, because we're going to come 
back and use this a lot. And I want to do a very high-level description of what goes 
into an iterative program, or how I would think about this, all right? And I know if 
John disagrees with me he'll tell me, but this is my way of thinking about it. 

If I want to try and decide how to tackle a problem in an iterative matter, here the 
steps I'm going to go through. First thing I'm going to do, is I'm going to choose a 
variable that's going to count. What I meant-- what in the world do I mean by that? 
I'm thinking about a problem, I'm going to show you an example in a second, first 
thing I'm going to do is say, what is the thing that's going to change every time I run 
through the same set of code? What is counting my way through this process? 

Now I'm putting count in double quotes, not to make it a string, but to say, this is 
count generically. It could be counting one by one through the integers, it could also 
be taking a collection of data and going through them one by one. It could be doing 
counting in some other mechanism. But what's the variable I want to use? 

Second thing I do, I need to initialize it. And I need to initialize it outside of the loop. 
That is, where do I want to start? And I need to make sure I have a command that 
sets that up. 

The third thing I'm going to do, is I need to set up the right end test. How do I know 
when I'm done with the loop? And obviously, that ought to involve the variable in 



some way, or it's not going to make a lot of sense, so this includes the variable, 
since that's the thing that's changing. 

All right. The fourth thing I'm going to do, is I'm going to then construct the block of 
code. And I want to remind you, that block of code is a set of instructions, the same 
set of instructions that are going to be done each time through the loop. All that's 
going to change, is the value the variable or the value of some data structures. And 
remind you that inside of here, I'd better be changing the variable. All right, if that 
variable that's counting is not changing, I'm going to be stuck in an infinite loop, so I 
ought to [UNINTELLIGIBLE PHRASE] that , right, expect somewhere in there, a 
change of that variable. All right? And then the last thing I want to do, is just decide, 
you know, what do I do when I'm done. 

OK. I know. It looks boring. But it's a structure of the things I want to think about 
when I go through trying to take a problem and mapping it into a iterative program. 
Those are the things I want to see if I go along. 

All right. So let me give you an example. I'm given an integer that's a perfect 
square, and I want to write a little piece of code that's going to find the square root 
of it. All right, so I'm cheating a little, I know it's a perfect square, somebody's given 
it to me, we'll come back in a second to generalizing it, so what would the steps be 
that I'd use to walk through it? 

Well if you think about these steps, here's an easy way to do it. Let's start at 1. Let's 
call x the thing I'm trying to find the square root of. Let's start at 1. Square it. If it's 
not greater than x, take 2. Square it. If it's not greater than x, take 3. Square it. And 
keep going, until the square of one of those integers is greater than or equal to--
sorry, just greater than x. OK, why am I doing that? When I get greater than x, I've 
gone past the place where I want to be. And obviously, when I get to something 
whose square is equal to x, I've got the answer I want, and I kick it out. 

So who knows what I've done? I've identified the thing I'm going to use to count, 
something some variable is going to just count the integers, I've identified the end 
test, which is when that square is bigger than the thing I'm looking for, I've 
identified basically what I want to do inside the loop, which is simply keep changing 
that variable, and I didn't say what I want to do when I'm done, essentially print out 
the answer. 

OK, so how can I code this up? Well, you might think, let's just jump in and write 
some code, I don't want to quite do that though, because I want to show you 
another tool that's valuable for thinking about how to structure the code, and that is 
a something called a flow chart. Now. People of Professor Guttag's and my age, 
unfortunately remember flow charts back-- as they say, on the Simpsons, back in 
the day, back in the 1960's, John, right?-- really good programmers had these 
wonderful little plastic stencils, I tried to find one, I couldn't find it It's a little stencil 
with little cut-out shapes on it, that you used to draw flow charts, I'm going to show 
you in a second, and you tucked it right in here next to your pocket protector with all 
your pens in it, you know, so, your belt was also about this high, and your glasses 
were this thick, you know, we have a few of those nerds left, we mostly keep them 
in the museum, but that was what you did with the flow chart. 

Despite making a bad joke about it, we're going to do the same thing here. We're 
going to do the same thing here, we're going to chart out a little bit of what should 



go into actually making this thing work. So here's a simple flow chart that I'm going 
to use to capture what I just described. And I'm going to, again, I'm actually going 
to do it the way they used to do it, and draw a rectangle with rounded corners, that's 
my starting point, and then what did I say to do? I said I need to identify a variable, 
I'm going to give it a name, let's just call ANS, for answer, and I need to initialize it, 
so I'm going to come down, and in a square box, I'm going to initialize ANS to 0. 

And now I want to run through the loop. What's the first thing I do in a loop? I test 
an end test. So the flow chart says, and the tradition was to do this in a diamond 
shape, I'm going to check if ANS times ANS-- oh, which way did I want to do this-- is 
less than or equal to x. Now that's a test. There are two possibilities. If the answer is 
yes, then I'm still looking for the answer, what do I want to do? Well, I don't have to 
do anything other than change the counter. So I'm going to go to ANS is ANS plus 1, 
and I'm going to do it again. Eventually, if I've done this right, that test is no-- and I 
wonderfully ran out of room here-- in which case, I'm going to go to a print 
statement, which was always done in a trapezoid, and print out ANS. I should have 
put a box below it that says stop. 

OK? Wow. And notice what I got here. Actually, this is a useful tool for visualizing 
how I'm trying to put it together, because it lets me see where the loop is, right 
there, it lets me see the end test, it lets me make sure that I'm in fact initializing the 
variable and I'm checking the right things as I go along. And the idea of this flow 
chart is, if you start, you know, a little ball bearing here, it's going to roll down, 
setting up an assignment statement, and then, depending on here, it's like there's a 
pair of flippers in there, it does the test, it sets the ball this way to change it to ANS 
plus 1, and comes back around, eventually it's going to drop through and print out 
the answer. 

The reason I'm going to show you this flow chart, I'm going to do one other example 
in a second, but I want to show you a comparison. Remember last time, we wrote 
this simple piece of code to print out even or odd. If, you know, x, it was in fact, 
even or odd. So let me show you what a flow chart for that would look like, because 
I want to make a comparison point here. 

If I were to do a flow chart for that one, I'd do the following. It reminds you, that the 
test here was, we took x if that's what we were looking for, it did integer division by 
2, multiplied it by 2, and we check to see if that was the same as x. If the answer is 
yes, then we did a print of even. If the answer was no, we did a print of odd, and we 
then carried on. Again, wow. 

But there's an important point here. Remember last time, I said that there's different 
kinds of complexity in our code, and I suggested for simple branching programs, the 
amount of time it takes to run that program is, in essence, bounded by the number 
of instructions, because you only execute each instruction at most once. It didn't 
depend on the size of the input. And you can see that there. 

I start off, either I take this path and carry on, or I take that path and carry on, but 
each box, if you like, gets touched exactly once. 

On the other hand, look at this one. This depends now on the size of x. All right? 
Because what am I going to do? I'm going to come down and say, is ANS squared 
less than or equal to x? If it is, I'm going to go around, and execute that statement, 
check it again, and go around and execute that. So I'm going to cycle around that 



loop there enough times to get to the answer, and that number of times is going to 
depend on the input, so as I change the input, I'm going to change the complexity of 
the code. 

Now this happens to be what we would call a linear process, because the number of 
times I go around the loop is directly related to the size of the argument. If I double 
the argument, I'm going to double the number of times I go around the loop. If I 
increase it by five, I'm going to increase by five the number of times I go around the 
loop. 

We'll see later on, there are classes of computation that are inherently much more 
complex. We hate them, because they're costly, but they're sometimes inherently 
that way. But you can see the comparison between these two. 

OK. Now, having done that, let's build this code. Yeah, if my machine will come back 
up, there we go. So, I'm going to now go ahead and write a little piece of code, and I 
put it here and I hope you can actually see these better this time, let me uncomment 
that region. All right. So, there's basically an encapsulation of that code, right? It 
says-- what, look at this, where am I, right here-- I've got some value for x initially, 
I'm going to set ANS to 0, just like there, and there's my loop, there's the test, which 
is right like that, is ANS squared less than or equal to x, if it is, there's the block 
corresponding to the loop, change ANS, and eventually when I'm done with all this 
thing, I'm just going to print ANS out. 

OK. All right, let me show you one other tool that I want to use. Which is, I've 
written that piece of code, I ought to check it. Well, I could just run it, but another 
useful thing to do is, I'm, especially as I want to debug these things, is to simulate 
that code. And I'm going to do this because, as Professor Guttag noticed to me, 
students seem reluctant to do this. I guess it's not macho enough, John, to just, you 
know, you know, go off and do things by hand, you ought to just run them, but it's a 
valuable tool to get into, so let me do that here. 

STUDENT: [UNINTELLIGIBLE] 

PROFESSOR ERIC GRIMSON: I'm doing such a great job. I've got to say, when my, 
I've got two sons, now aged eighteen and twenty, they used to think I had the 
coolest job in the world because I came home covered in chalk. Now they have a 
different opinion that you can probably figure out. 

All right. Simulate the code. What I mean by that is, pick a simple set of values, and 
let's walk through it to see what happens. And this is useful because it's going to 
allow me to A, make sure that I've got something that's going to terminate, it's 
going to let me make sure that in fact I'm doing the right kinds of updates. I could 
do this, by the way, by running the code and putting print statements in various 
places as well, but the hand simulation is valuable, so let me just start it. 

What do I have here? I need the variable, ANS, I need x, and I need ANS times ANS, 
ANS times ANS. Right. Those are the three things that are involved in this 
computation. and I pick something reasonably simple. The ANS starts at 0. I set up 
x, I think, to be 16 there. So what does the loop say? I can either look at my flow 
chart, or I can look at the code. If I look at the flow chart, it says, I'm at this point. 
Look at ANS squared. Is it less than or equal to-- sorry, first of all, ANS squared is 0, 
is it less than or equal to x, yes. So what do I do? Change ANS. X doesn't change. 



Back around to the test. What's ANS squared? It's 1. Is it less than or equal to 16? 
Sure. Run the loop again. ANS becomes 2. X stays 16. ANS squared is 4. Is that less 
than or equal to 16? Yes. Aren't you glad I didn't pick x equals 500? All right. ANS 
goes up by 0. ANS squared is nine. Still less than or equal to 16. ANS goes to 4. X 
stays the same. 4 squared is 16. Is 16 less than or equal to 16? Yes. So ANS goes to 
five. ANS squared becomes 25. Ah! That is now no longer true here, so I print out 5. 
Right. Sure. Square root of 16 is 5. It's Bush economics. OK? I know. I'm not 
supposed to make bad jokes like that. 

What happened? Yeah. 

STUDENT: It doesn't stop at the right place. 

PROFESSOR ERIC GRIMSON: It doesn't stop at the right place. Thank you. Exactly. 
Right? My bug here is right there. Ah, let me find my cursor. I probably want that. 
Right? I want less than, rather than less than or equal to. This is an easy bug to 
come up with. But imagine, if you don't do the test, you're going to get answers that 
don't make any sense. And in fact, if we just go ahead and run this now, hopefully 
we get out-- oops, sorry, I'm going to have to change this quickly, I still have some 
things uncommented at the bottom, yeah, there they are, I don't think we need that 
yet, all right, we will comment those out. 

OK. So. Why did I do it? It's a simple example, I agree, but notice what I just did. It 
allowed me to highlight, is the code doing the right thing? I spotted an error here, I 
could have spotted it by running it on different test sets, and using prints things, 
another way of doing it, but this idea of at least simulating it on simple examples lets 
you check a couple of important questions. 

And in fact, now let me ask those two questions about this piece of code. First 
question is, for what values of integers-- we're going to assume integers-- but for 
what values of x does this code terminate? And the second question is, for what 
values of x does it give me back the right answer? 

All right, first question. What values of x does it terminate? Again, assume x is an 
integer. Well, break it down into pieces. Suppose x is positive. Does it terminate? 
Sure. All right? Because ANS starts out as 0, so ANS squared is 0, and each time 
through the loop, ANS is increasing. That means, at some point, in some finite 
number of steps, ANS squared has got to get bigger than x if x is positive. So for 
positive integers, it terminates. And it probably, I think we can deduce, returns the 
right answer here. 

Right. X is negative. X is -16. Does this code terminate? Boy, I feel like Arnold 
Schwarzenegger. Does this terminate? Somebody. 

STUDENT: [UNINTELLIGIBLE] 

PROFESSOR ERIC GRIMSON: Ah, thank you, so it does terminate, right? You're 
sitting too far back, let me try-- oh, too far!-- Sorry. Come get me one later if you 
can't find it. 

Yes, it stops at the first step, right? Let's look at it. It says, if answer, sorry, imagine 
x is -16, ANS is 0, is less than -16, no. So what does it do? It prints out 0. 



Ah! So that now answers my second question, it does terminate, but does it give me 
the right answer? No. Right? It gives me an answer, and imagine I'm using this 
somewhere else, you know, it's going to go off and say, gee, the square root of -16 
is 0. Well, it really should be a, you know, an imaginary number, but this is not a 
valuable thing to have come back. 

So that's the second thing I've just highlighted here, is that I now have the ability to 
check whether it does the right thing. 

And those are two things that you'd like to do with every looping construct you 
write: you'd like to be able to assure yourself that they will always terminate, and 
then the second thing you'd like to do, is to assure yourself that it does give you 
back a reasonable answer. 

We started to talk about ways to do the former. It's looking at the end test. It's 
looking at the kinds of conditions you're going to put in. For the latter, this is a place 
where running test cases would do a good job of helping with that. Nonetheless, 
having done that, let's look at a better way to write this. Which is right here, it is 
also, I think, on your sheet, I'm going to uncomment that, and comment this one 
out, yeah. All right? 

So let's look at this code for a second. Notice what this does. Certainly the heart of 
it, right in here, is still the same thing. But notice what this does. The first thing it 
does is, it says, let's check and make sure x is greater than or equal to 0. If it isn't, 
notice what's going to happen. None of that block is going to get executed, and it's 
going to come down here and print out a useful piece of information, which says, 
hey, you gave me a negative number. I don't know how to do this. 

If it is, in fact, positive, then we're going to go in here, but now notice what we're 
doing here. There is the basic thing we did before, right? We're checking the end test 
and incrementing, actually I was going to, I commented that out for a reason you'll 
see in a second, but I, normally I would keep this on, which would let me, at each 
step, see what it's doing. If I ran this, it would print out each step. Which is helping 
me make sure that it's incrementing the right way. 

OK, once it gets to the end of that, what's it going to do? It's going to come down 
here and, oh. What's that doing? Well, I cheated when I started. I said, somebody's 
giving me a perfect square, I'm looking for the square root of it. But suppose I gave 
this thing 15, and asked it to run. It'd still give me an answer. It just would not be 
the answer I'm looking for. 

So now, in this case, this code is going to, when we get here, check, and if you 
haven't seen that strange thing there, that exclamation point in computer-ese called 
a bang, it says if ANS star ANS is not equal to x, all right? What's that say, it says, 
I've already gotten to the end of the loop, I'm now past where I wanted to be, and 
I'm going to check to make sure that, in fact, this really is a perfect square. If it 
isn't, print out something says, ah, you gave me something that wasn't a perfect 
square. And only if that is true, am I going to print out the answer. 

It's the same computation. But this is a nice way of writing it, often called defensive 
programming. And I think we have lots of variations on it-- I don't know about John, 
what your favorite is, for the definition of defensive programming-- for me it says, 
make sure that I'm going through all possible paths through the code, make sure I'm 



printing out, or returning if you like, useful information for each style, sorry, for each 
path through the code, make sure that for all possible inputs there is a path through 
the code, or a way to get through the code, that does not cause an error or infinite 
loop. What else would you add, John? 

PROFESSOR JOHN GUTTAG: Well, we'll come back to this later in the term, and talk 
in some detail about particular techniques. The basic idea of defensive programming 
is, to assume that A, if you're getting inputs from a user, they won't necessarily give 
you the input you've asked for, so if you ask for a positive number, don't count on 
them giving you one, and B, if you're using a piece of a program written by a 
programmer who is not perfect, perhaps yourself, there could be mistakes in that 
program, and so you write your program under the assumption that, not only might 
the user make a mistake, other parts of your program might make a mistake, and 
you just put in lots of different tests under the assumption that you'd rather catch 
that something has gone wrong, then have it go wrong and not know it. And we'll 
talk later in the term about dozens of different tricks, but the main thing to keep in 
mind is the general principle that people are dumb. And will make mistakes. And 
therefore, you write your programs so that catastrophes don't occur when those 
mistakes are made. 

PROFESSOR ERIC GRIMSON: Good. As John said, we're going to come back to it. But 
that's what, basically the goal here. And you saw me put my hands up when I said 
stupid programmer? I've certainly written code that has this problem, I've tried to 
use my own code that has this problem, and good to us, right, good hygiene, I'm 
going to use that word again here, of getting into the habit of writing defensive code 
up front, it's part of that collection of things that you ought to do, is a great thing to 
do. 

I stress it in particular because, I know you're all going to get into this stage; you've 
got a problem set due in a couple of hours, you're still writing the code, you don't 
want to waste time, and I'm going to use quotes on "waste time", doing those extra 
things to do the defensive programming, you just want to get the darn thing done. 
It's a bad habit to get into, because when you come back to it, it may haunt you 
later on down the road. So really get into that notion of trying to be defensive as you 
program. 

OK. The other thing I want to say here, is that this style of program we just wrote, is 
actually a very common one. And we're going to give it a nice little name, often 
referred to as exhaustive enumeration. 

What does that mean? It says, I'm literally walking through all possible values of 
some parameter, some element of the computation, testing everything until I find 
the right answer. All right, so it's, you know, again, I can even write that down, 
essentially saying, try all reasonable values until you find the solution. And you 
might say, well, wait a minute, isn't that going to be really expensive? And the 
answer is, yeah, I guess, if you want to search, you know, all the pages on Google, 
one by one, yes, probably, it's going to take a while. But there are an awful lot of 
computations for which this is the right way to do it. You just want to exhaustively 
go through things. 

And just to give you a sense of that, let me show you an example. I'm going to 
change this, all right? Nice big number. You know, computers are fast these days. I 
can make this even bigger, it's going to do it fairly quickly, so it really is quick to do 



this. It doesn't mean that exhaustive enumeration is a bad idea, it is often the right 
idea to use. 

So we've seen one example of this, this idea of walking through all the integers 
looking for the square root. Let's look at some other examples, in order to try and 
see other ways in which we could do it. 

OK. In particular, let's go over to here, and let me show you a second example. And 
let me comment that out. Here's another problem that I'd like to solve. Suppose I 
want to find all the divisors of some integer, I want to figure out what all the divisors 
are that go evenly into it. Again, same kind of reasoning says, given some value x, I 
happened to pick a small one here, what's an easy way to do this? Well, let's just 
start at one. That's my variable I'm going to change and check. Does it divide evenly 
into x? If it does, print it out. Move on to the next one, print it out. So again, I can 
do the same kind of thing here, you can see that, in fact, let's just run it to make 
sure it does the right thing, OK? In fact, if I go back to the code, what did I decide to 
do here? I say, starting with an initialization of I, there's my first step, as equal to 1, 
I'm going to walk through a little loop where I check, as long-- first of all, as long as 
I is less than x, so there's my end test, I'm going to do something. And in this case, 
the something is, I'm going to look to see if I divides x evenly. So I'll remind you of 
that amp-- sorry, that percent sign there, that says if x divided by I has a remainder, 
because this gives me back the remainder, if that's equal to 0, print something out. 
And there's my nice increment. Simple little piece of code. Notice again, exactly the 
same form: I picked the thing I wanted to vary, I initialized it outside the loop, I 
have a test to see when I'm done, and then I've got a set of instructions I'm doing 
every time inside the loop. In this case, it's doing the check on the remainder and 
printing them out. And when I'm done with the whole thing, before I end the 
increment of the variable, you know, when I'm done, I'm just not returning anything 
out. OK. So now you've seen two simple examples. Let me generalize this. In this 
case, my incrementer was just adding 1 to an integer, it's a pretty straightforward 
thing to do. But you can imagine thinking about this a little differently. If I somehow 
had a collection, an ordered collection of all the integers, from 1 to 10, I could 
imagine doing the same thing, where now what I'm doing is, I'm starting with the 
first element of that collection, doing something, going to the next element, doing 
something, going to the next element, doing something, I'm just walking through the 
sequence of elements. Right? And I haven't said yet, how do I get that collection, but 
you could certainly conceptualize that, if I had that collection, that would be nice 
thing to do. That is a more common pattern. That is basically saying, given some 
collection of data, I want to have again a looping mechanism, where now my process 
is, walk through this, the collection, one element at a time. And for that, we have a 
particular construct, called a FOR loop. It's going to do exactly that for us. It's going 
to be more general than this, and we're going to come back to that, in fact, Professor 
Guttag's going to pick this up in a couple of lectures, but we can talk right now about 
the basic form. The form of a FOR loop says, FOR, and I'm going to put little angle 
braces in here again, to say, for some variable, like a name I want to get to it, in 
some collection, and then I have a block of code. And what it's saying semantically 
is, using that variable as my placeholder, have it walk through this collection, 
starting at the first thing, execute that code, then the next thing, execute that code, 
and so on. One of the advantages of this is, that I don't have to worry about 
explicitly updating my variable. That happens for me automatically. And that's very 
nice, because this allows me to be sure that my FOR loop is going to terminate. And 
because, as long as this collection is finite, this thing is just going to walk through. 
All right? So, if I show you, for example, I'm going to comment this one out in the 



usual manner, and let's look at uncommenting that, there is the same piece of code. 
Now, I slung something by you, or snuck something by you, which is, I hadn't said 
how to generate the set of integers from 1 to 10. So, range is a built-in Python 
function. I'm going to come back to it in a second. For now, just think of it as saying, 
it gives you all the integers from 1 up to, but not including, x. OK. But now you can 
see the form. This now says, OK, let I start as the first thing in there, which is 1, and 
then do exactly as I did before, the same thing, but notice I don't need to say how to 
increment it. It's happening automatically for me. OK. In fact, if I run it, it does the 
same thing, which is what I would expect. OK. Now, the advantage of the FOR, as I 
said, is that it has, then, if you like, a cleaner way of reading it. I don't have to worry 
about, do I initialize it, did I forget to initialize it outside the loop, it happens 
automatically just by the syntax of it, right there, that's going to start with the first 
element. I don't have to worry about, did I remember to put the incrementer in, it's 
going to automatically walk it's way through there. Second advantage of the FOR is, 
that right now, we're thinking about it just as a sequence of integers. We could 
imagine it's just counting its way through. But we're going to see, very shortly, that 
in fact those collections could be arbitrary. We're going to have other ways of 
building them, but it could be a collection of all the primes. Hm. There's an 
interesting thing to do. It could be a collection of, ah, you know, I don't know, 
batting averages of somebody or other. It could be arbitrary collections that you've 
come up with in other ways. The FOR is, again, going to let you walk through that 
thing. So it does not have to be something that could be described procedurally, 
such as add 1 just to the previous element. It could be any arbitrary collection. And 
if I were to use that again, I'd just put it on your handout, I could go back and 
rewrite that thing that I had previously for finding the square roots of the perfect 
squares, just using the FOR loop. OK. What I want to do, though, is go on to-- or, 
sorry, go back to-- my divisor example. [UNINTELLIGIBLE PHRASE] OK. Try again. 
I've got a number, I want to find the divisors. Right now, what my code is doing is, 
it's printing them up for me, which is useful. But imagine I actually wanted to gather 
them together. I wanted to collect them, so I could do something with them. I might 
want to add them up. Might want to multiply them together. Might want to do, I 
don't know, something else with them, find common divisors, of things by looking at 
them. I need, in fact, a way to make explicit, what I can't do that with range, is I 
need a way to collect things together. And that's going to be the first of our more 
compound data structures, and we have exactly such a structure, and it's called a 
tuple. This is an ordered sequence of elements. Now, I'm going to actually add 
something to it that's going to make sense in a little while, or in a couple of lectures, 
which is, it is immutable. Meaning, I cannot change it, and we'll see why that's 
important later on. But for now, tuple is this ordered sequence of structures. OK. And 
how do I create them? Well, the representation is, following a square bracket, 
followed by a sequence of elements, separated by commas, followed by a closed 
square bracket. And that is literally what I said, it is an ordered sequence of 
elements, you can see where they are. OK? So, let me do a little example of this. If I 
go back over here, let's define-- er, can't type-- I can look at the value of test, it's an 
ordered sequence. I need to get elements out of it. So again, I have a way of doing 
that. In particular, I can ask for the zeroth element of test. OK, notice, I'm putting a 
square bracket around it, and it gives me-- I know this sounds confusing, but this is 
a long tradition, it gives me-- ah, yes. 

STUDENT: [UNINTELLIGIBLE] 

PROFESSOR ERIC GRIMSON: Sorry? 



STUDENT: [UNINTELLIGIBLE] 

PROFESSOR ERIC GRIMSON: I created a list here? Ah, thank you. I'm glad you guys 
are on top of it. You're saying I want that. Is that right, John? Yes? OK. Sorry. You're 
going to see why this was a mistake in a little while. I did not want to make a list, I 
wanted to create a tuple thank you for catching it. I want parens, not square 
brackets there. You'll also see in a little while why both of these things would work 
this way, but it's not what I wanted. OK? So I guess I should go back, and let me do 
this correctly this way. Again, I can look at test, and I guess test now if I want to get 
the element out-- angle bracket or square bracket? I still want square bracket, that's 
what I thought-- OK. Now I can go back to where I was, which is a strange piece of 
history, which is, we start counting at 0. So the-- I hate to say it this way, the first 
element of this tuple is at position 0, or index 0, OK?-- so I can get the zeroth one 
out, I can get, if I do 2, I get the third thing out, because it goes 0, 1, 2-- notice, 
however, if I do something that tries to go outside the length of the tuple it 
complains, which is right. Tuples? also have another nice structure, which is, I can 
go the other direction, which is, if I want to get the last element of that tuple I give it 
a negative index. So, imagine, you think of it as, is it starting right, just before the 
beginning of the thing, if I give it a it's going to take the first one, if I give it a 1, it's 
going to take the next one, but I can go the other direction, if I give it a -1, it picks 
up the last element of the tuple. 

And again, I can go -2, go back. So this is what we would call selection. We can do 
things like foo of to get out the particular element. I can also pick up pieces of that 
tuple. Again I want to show you the format here. If I give it this strange expression, 
this is saying I want to get the piece of the tuple starting at index 1, it's going to be 
the second element, and going up to but not including index 3. And it gives me back 
that piece. Actually a copy of that piece of the tuple. This is called slicing. And then 
just to complete this. Two other nice things you can do with slices are you can get 
the beginning or the end of tuple. So, for example, if I say TEST and I don't give it a 
start but I give it an end, then it gives me all the elements up to that point. And I 
can obviously do the other direction which is I can say skip to index 2 and all the 
remaining pieces. This lets me slice out, if you like, the front part or back part or a 
middle part of the tuple as I go along. 

What in the world does that have to do with my divisor example? Well, actually, 
before I do that let me in fact fill in a piece here. Which is remember I said range we 
could think of conceptually as a tuple -- or sorry as a sequence of these things. In 
fact it gives me back, now I hate this, it's actually a list it's not a tuple. But for now 
think of it as giving you back an explicit version of that representation of all those 
elements. You'll see why I'm going to make that distinction in a couple of lectures. 

All right. What does this have to do with my divisor example? This says I can make 
tuples, but imagine now going back to my divisor example and I want to gather up 
the elements as I go along. I ought to be able to do that by in fact just adding the 
pieces in. And that's what I'm going to do over here. Which is, let me comment that 
out, let me uncomment that. And I guess I need the same thing here, right? I need 
parens not, thank you. You can tell I'm an old time list packer. I really do love these 
things. And is that right, John? OK, so my apologies that your handout is wrong. I 
did not think to check about the difference between these things. 

Nonetheless, having done that, let's look at what I'm going to do. I now want to run 
a loop where I need to collect things together. I'm going to give a name to that. And 



what you see there is I'm going to call divisors initially an empty tuple, something 
has nothing in it. Right here. And then I'm going to run through the same loop as 
before, going through this set of things, doing the check. Now what I'd like to do, 
every time I find a divisor I'd like to gather it together. So I'm going to create a tuple 
of one element, the value of i. And then, ah, cool. Here's that addition operation 
that's badly overloaded. This is why Professor Guttag likes and I don't. Because 
given that this is a tuple and that's a tuple, I can just add them together. That is 
concatenate them, if you like, one on the end of it. And if I keep doing that, when 
I'm done divisor will be a collection of things. So let me just run it. All right. This is 
what I get for trying to --

STUDENT There should be a comment after the i in parentheses. 

PROFESSOR ERIC GRIMSON: Thank you. Right there. All right, we'll try this again. 
OK. And there are the set of devices. Thank you. Who did that? Somebody gets, no? 
Yours? Thank you. Nice catch too by the way. All right, so now that you can see that 
I can screw up programming, which I just did. But we fixed it on the fly. Thank you. 
What have we done? We've now got a way of collecting things together, right? And 
this is the first version of something we'd like to use. Now that I've gotten that 
bound as a name, I could go in and do things with that. I could go in and say give 
me the fourth divisor, give me the second through fifth divisor. Again as I suggested 
if I've got two integers and I want to find common divisors I could take those two 
lists and walk through them. I shouldn't say list, those two tuples, and walk through 
them to find the pieces that match up. 

So I've got a way now of gathering data together. The last thing I want to do is to 
say all right, now that we've got this idea of being able to collect things into 
collections, we've got the ability now to use looping structures as we did before but 
we can walk down then doing things to them, where else might we have this need to 
do things with looping structures? And I'm going to suggest you've already seen it. 
What's a string? Well at some level it is an ordered sequence of characters. Right? 
Now it is not represented this same way. You don't see strings inside these open 
parens and closed parens. You don't see strings with commas between them, but it 
has the same kind of property. It is in ordered sequence of characters. We'd like to 
do the same thing with strings. That is we'd like to be able to get pieces of them out. 
We'd like to be able add them together or concatenate them together. We'd like to 
be able to slice them. And in fact we can. 

So strings also support things like selection, slicing, and a set of other parameters, 
other properties. And let's just look at that. Again if I go back here, let me comment 
this out. Right here are a pair of strings that I've set up, s 1 and s 2. Let me just run 
these. We can go back over here. So I can see the value of s 1, it's a string. I can do 
things like s 1 and s 2. As we saw before, it simply concatenates them together and 
gives me back a longer string. But I can also ask for parts of this. So I can, for 
example, say give me the first element of string 1, s 1. Ah, that's exactly what we 
would have thought if this was represented as an ordered sequence of things. Again 
I should have said first, index 0, the first one. I can similarly go in and say I'd like all 
the things between index 2 and index 4. And again, remember what that does. Index 
2 says start a 0. 1, 2. So a, b, c. And then it goes up to but not including index 4 so 
it gets c and d and then it stops. I can similarly, just as I did with the tuples, I can 
ask for everything up to some point or I can ask for everything starting at some 
point and carrying on. 



Now what you're seeing here then is the beginning of complex data structures. And 
the nice thing is that there's a shared behavior there. Just as I can have tuples as an 
ordered collection of things, strings behave as an ordered collection of things. So I 
can start thinking about doing manipulation on strings. I can concatenate them 
together, I can find pieces inside of them, I could actually do things with them. And 
let me show you just a simple little example of something I might want to do. 
Suppose I take, I better comment this one out or it's going to spit it out. Let me 
comment that out. Suppose I take a number. I'd like to add up all the digits inside of 
the number. I can use the tools I've just described in order to capture that. 

So what would I want to do? I'd like to somehow walk down each of the digits one at 
a time and add them up. Ah, that's a looping mechanism, right? I need to have some 
way of walking through them. An easy way to do it would be inside of a FOR. And 
what would I like to do? Well I need to take that number and I'm going to turn it into 
a string. So notice what I'm going to do right here. I take that number and convert it 
into a string. That's an example of that type conversion we did earlier on. By doing 
that it makes it possible for me to treat it as an ordered sequence of characters. And 
so what's the loop going to do? It's going to say FOR c, which was my name for the 
character in that string. That means starting at the first one, I'm going to do 
something to it. And what am I'm going to do? I'm going to take that character, 
convert it back into an integer, and add it into some digits. And I've done a little 
short hand here, which is I should have said some digits is equal to some digits plus 
this. But that little short hand there is doing exactly the same thing. It is adding that 
value into some digits and putting it back or signing it back into some digits. And I'll 
walk through that loop and when I'm done I can print out the total thing does. And if 
I do that, I get out what I would expect. 

So what have I done? We've now generalized the idea of iteration into this little 
pattern. Again as I said this is my version of it, but you can see, every one of the 
examples we've used so far has that pattern to it. Figure out what I'm trying to walk 
through. What's the collection of things I'm trying to walk through. Figure out what I 
want to do at each stage. Figure out what the end test is. Figure out what I'm going 
to do at the end of it. I can write it explicitly. I can write it inside of a FOR loop. And 
we've started to add, and we'll see a lot more of this, examples of collections of 
structures so that we don't just have to do something that can be easily described as 
walking through a set of things but can actually be a collection that you walk 
through. 

The last thing I want to point out to you is, I started out with this list. I haven't 
added anything to the list, right? I mean I've got a different kind of looping 
mechanism. I guess I should say that's not quite true. I've added the ability to have 
more complex data structures here. But I dropped a hint in the first lecture about 
what you could computer with things. In fact if you think for a second about that list, 
you could ask what can I compute with just that set of constructs? And the answer is 
basically anything. This is an example of what is referred to frequently as being a 
Turing complete language. That is to say with just those set of constructs, anything 
you can describe algorithmically you can compute with that set of constructs. So 
there's good news and bad news. The good news is it sounds like we're done. Class 
is cancelled until final exam because this is all you need to know, right? The bad 
news is of course that's not true. The real issue is to figure out how to build 
constructs out of this that tackle particular problems, but the fundamental basics of 
computation are just captured in that set of mechanisms. All right, we'll see you next 
time. 


