
Table of Contents:
1. Integers and floats
2. for vs. while loops
3. Checking boolean conditions with if/else
4. Docstrings
5. Changing collections while iterating over them
6. Directly Accessing Instance Variables
7. Calling a superclass constructor from a subclass
8. Pitfalls of storing custom objects in data structures
9. Which data structure should I use?

1. Integers and floats
Be careful when deciding whether to represent data as integers or floats, and be sure that you
consider all possible behaviors in computation.

For a detailed explanation of how Python represents floats, read Section 3.4 (pp. 29-31) of
your textbook. In short, floats are represented as factors of powers of two, and many decimal
numbers cannot be exactly represented in this manner. The most common problem you'll find
is trying to check for equality with a floating point number that you are changing. Say that you
have a while loop that increments a float by 0.1, and you want this whole loop to continue until
a control variable equals 0.3. You might find that setting up your loop in the following manner
produces an infinite loop:

variable = 0.0
while variable != 0.3:

variable += 0.1

That's because 0.1+0.1+0.1 is not equal to 0.3. 0.1 cannot be precisely represented as a
floating point number, so 0.1+0.1+0.1 = 0.30000000000000004. When you are trying to take
simple counts of elements, always use integers to avoid this type of problem.

Additionally, make sure that you typecast between floats and integers at the appropriate time.
If you want to do integer division of 3 over 5, writing float(3/5) won't produce the desired result.
Remember that Python evaluates inner expressions first, so your code will actually do integer
division of 3/5, then cast the result to a float. Instead, you should cast one (or both) of the
integers to a float before doing the division - in this case, float(3)/5 or 3/float(5). You'll usually
run into this problem when taking averages or calculating percentages.

2. for vs. while loops
Choosing the right loop type makes your code more legible and can also help prevent bugs.
Everything that can be written with a for loop can be written with a while loop, but while loops
can solve some problems that for loops don't address easily. You should usually write for loops

1

when possible.

In general, use for loops when you know the number of iterations you need to do - e.g., 500
trials, one operation per character in a string, or an action on every element in a list. If you can
describe the problem you're trying to solve in terms of each or every element in an iterable
object, aim for a for loop. Using a for loop when possible will decrease the risk of writing an
infinite loop and will generally prevent you from running into errors with incrementing counter
variables.

Example (print “hello” 500 times):
for i in xrange(500):
 print 'hello'

Example (add 1 to every element in the list):
my_list = [5, 2, 7, -4, 0]
for i in xrange(len(my_list)):
 my_list[i] += 1

If you're instead iterating for a certain condition to be satisfied, you want to use a while loop.
While loops are useful when you can define the number of iterations in terms of a boolean
variable. If you are waiting for a user to enter an input correctly or are waiting for a randomly
generated value to exceed a certain amount, you'll want to use a while loop. Problems that can
be described using "until" should use while loops.

Example (loop until the user enters a positive number):
num = float(raw_input('Enter a positive number: '))
while num <= 0.0:
 num = float(raw_input('Enter a POSITIVE number: '))

Example (loop until the randomly generated number is greater than 0.5):
import random
num = random.random()
while num <= 0.5:
 num = random.random()

To improve the average-case performance of your code, you can sometimes exit out of loops as
soon as you find your answer; you'll find many loops that are used to find True/False answers
follow this pattern. For example, say you want to check whether any value in a list is great than
5:

my_list = [1,2,3,4,5,6,7,8]
greater_than_five = False
for elem in my_list:
 if elem > 5:

2

 greater_than_five = True
 break

3. Checking boolean conditions with if/else
Often, people have a tendency to be overly verbose. Observe the following example:

if my_function() == True: # my_function returns True or False
return True

else:
return False

When Python evaluates my_function(), the code is reduced to the following (let’s pretend it
returned True):

if True == True: # my_function returns True or False
return True

else:
return False

This seems repetitive, doesn’t it? We know that True is equal to True, and False is not. So,
instead of keeping that == True around, we could just have the function call inside the if
statement:

 if my_function(): # my_function returns True or False
return True

else:
return False

There is an important point to note here. Since my_function() is going to be a boolean,
and we’re effectively returning the value of that boolean, there’s no reason not to just return the
boolean itself:

return my_function() # my_function returns True or False

This is nice and concise, but what if we want to return True if my_function returns False,
and False when it returns True? There’s a Python keyword for that! So, imagine our code
starts as:

if my_function() == True: # my_function returns True or False
return False

else:
return True

3

We can use not to write this as:

return not my_function() # my_function returns True or False

4. Docstrings
When writing new classes and functions, it is important to document your intent by using
docstrings. For instance, in pset 5, since there were a lot of new classes to implement, adding a
docstring explaining the purpose of each class is a good idea.

Even something as simple as:
class TitleTrigger(WordTrigger):
 """
 Subclass of WordTrigger that represents a Trigger which checks
 if the story's title matches a given word.
 """
etc.

Including a docstring means the specification you’ve written can be accessed by those who try
to create an instance of your class. For example, if you change your TitleTrigger class definition
to the above, run the file, then type the following at the interpreter:
>>> TitleTrigger(
You will see your docstring pop up. :)

5. Changing collections while iterating over them
We’ve mentioned that it’s poor practice to modify a collection while iterating over it. This is
because the behavior resulting from modification during iteration is ambiguous. The for
statement maintains an internal index, which is incremented for each loop iteration. If you
modify the list you’re looping over, the indices will get out of sync, and you may end up skipping
over items or processing the same item multiple times.

Let’s look at a couple of examples:
elems = ['a', 'b', 'c']
for e in elems:
 print e
 elems.remove(e)
This prints:
a
c

Meanwhile, if we look at what elems now contains, we see the following:
>>> elems
['b']

4

Why does this happen? Let’s look at this code rewritten using a while loop.
elems = ['a', 'b', 'c']
i = 0
while i < len(elems):
 e = elems[i]
 print e
 elems.remove(e)
 i += 1
This code has the same result. Now it’s clear what’s happening: when you remove the 'a' from
elems, the remaining elements slide down the list. The list is now ['b', 'c']. Now 'b' is at index 0,
and 'c' is at index 1. Since the next iteration is going to look at index 1 (which is the 'c' element),
the 'b' gets skipped entirely! This is not what the programmer intended at all!

Let’s take a look at another example. Instead of removing from the list, we are now adding
elements to it. What happens in the following piece of code?
for e in elems:
 print e
 elems.append(e)
We might expect the list elems to be ['a', 'b', 'c', 'a', 'b', 'c'] at the end of
execution. However, instead, we get an infinite loop as we keep adding new items to the elems
list while iterating. Oops!

To work around this kind of issue, you can loop over a copy of the list. For instance, in the
following code snippets, we wish to retain all the elements of the list the meet some condition.
elems_copy = elems[:]
for item in elems_copy:
 if not condition:
 elems.remove(item)

elems will contain the desired items.

Alternatively, you can create a new list, and append to it:
elems_copy = []
for item in elems:
 if condition:
 elems_copy.append(object)
elems_copy will now contain the desired items.

Note that the same rule applies to the set and dict types; however, mutating a set or dictionary
while iterating over it will actually raise a RuntimeError -- in this way, Python explicitly prevents
this.

6. Directly Accessing Instance Variables

5

This can be a problem because it breaks the interface your class provides to the Abstract
Data Type. Here is an example of this, as a line of code you might write for something like
TitleTrigger.evaluate in pset 5:

title = story.title # evil

This is bad because it means that the instance variable for the title in NewsStory had to
be stored as self.title for this to work. However, the programmer writing NewsStory
(yes, that’s you, too) might not have stored it as self.title, because maybe he/she/
you preferred self.t, or self.my_story_title, or maybe the 1st element of the
list self.story_attributes, or anything else. In fact, the only promise made about
NewsStory is that there is a constructor that takes in some elements of a story (guid, title, etc.),
and there is a getter method for each of these properties.

So, the safer way to do this? Use getter methods!

title = story.get_title() # much better!

7. Calling a superclass constructor from a subclass
For a subclass that extends the functionality of a superclass (e.g. ResistantVirus and
SimpleVirus in pset 7), always reuse the functionality of the superclass instead of rewriting it.
This goes back to the concept that we should avoid repeated code.

Say we have the following constructor for the SimpleVirus class:
class SimpleVirus(object):

 def __init__(self, maxBirthProb, clearProb):
 self.maxBirthProb = maxBirthProb
 self.clearProb = clearProb
 …

When we define the ResistantVirus class, we could just repeat the two lines of code contained
in the constructor as in the below code snippet:
Method 1
class ResistantVirus(SimpleVirus):
 def __init__(self, maxBirthProb, clearProb, resistances, mutProb):
 self.maxBirthProb = maxBirthProb
 self.clearProb = clearProb
 self.resistances = resistances
 self.mutProb = mutProb
 …

6

Alternatively, we could make use of inheritance and call the superclass constructor on the first
two parameters since this would have the same effect.
Method 2
class ResistantVirus(SimpleVirus):

 def __init__(self, maxBirthProb, clearProb, resistances, mutProb):
 # Always call the superclass constructor as the first line of
 # the subclass constructor.
 SimpleVirus.__init__(self, maxBirthProb, clearProb)
 self.resistances = resistances
 self.mutProb = mutProb
 …

Method 2 is superior to Method 1 in that we prevent ourselves from repeating the code
that initializes the variables self.maxBirthProb and self.clearProb. Why is this so
important?

Say for some reason, while implementing Method 1, we decided to call the maximum
birth probability in the ResistantVirus class self.maximumBirthProb instead of
self.maxBirthProb. In Python, the superclass constructor is not automatically
called when constructing a subclass instance. Now, in all of the superclass methods
that reference self.maxBirthProb, we will get an error because it only exists as
self.maximumBirthProb.

Another reason to use Method 2 is that the superclass constructor may do some other, more
complicated initialization and we want to ensure that it is executed.

8. Pitfalls of storing custom objects in data structures
Some people tried to store Position objects in their data structure of clean tiles, writing code
such as the following:
def isTileCleaned(self, m, n):
 newPosition = Position(m, n)
 return newPosition in self.cleanTileList

This code will always return False, even if the tile at (m, n) is clean. The reason why this is
problematic gets into the internals of how objects are compared for equality in Python.

How does Python compare objects for equality? Well, for primitives like integers, it's pretty
simple -- just see if the two numbers have the same value. Similarly, for strings, check if the
characters at each position in the string are the same.

Whenever we create a new class from scratch in Python, what is the default way to check for
equality?

7

The answer is that for objects, the default way Python checks if they are equal is to check
the location where that object is stored in memory. Because this code creates a new Position
object, newPosition, it makes sense that this particular instance being created is not stored
in the same location as any other Position object in the list of clean tiles! Therefore, of course it
won't be found when Python checks to see if it's in the list.

There are a couple of ways to avoid this issue. Our recommended way for the purposes of this
course involves changing what is being stored in the data structure. Representing a set of x, y
coordinates as a tuple would make testing for equality much simpler.

There are other, better ways to solve this problem that are more complicated. If you’d like to get
more information, please come to office hours and ask a TA or LA. :)

9. Which data structure should I use?
In problem set 6, we asked you to store the state of cleanliness for w * h tiles in a rectangular
room. We saw different solutions to this, and we want to discuss the pros and cons of different
approaches.

List
Most people chose to store a list of tuples (x, y) for every clean tile. While this works, there are a
few things that make this implementation difficult to work with.

The first is that whenever a tile is “cleaned”, we must iterate through the entire list (an
O(len(cleanTileList) operation) to see if the tile is not yet considered “clean” before adding the
tile’s coordinates to the clean tile list. The necessity of this check can lead to bugs and reduces
efficiency.

Another issue with this representation is that by including only those tiles that are clean in the
list, we are storing a boolean value for each tile implicitly (i.e., if tile is present, it is clean). Here,
since what we are doing is storing both the tile’s coordinates and something about the tile,
expressing it explicitly would be clearer (see dictionary-based solution). For instance, what if we
changed the possible states of the room to be one of “clean”, “dirty”, and “just a little messy”?
This representation would not be flexible enough to accommodate that.

Set
Another solution involved storing coordinates as a set of tuples in the set if the tile was clean,
e.g.,
set((x, y),...)
This solution is superior to the solution using lists, since adding a tuple to the set that already
exists will not ever yield a duplicate, so this is less likely to run into bugs. Additionally, set
operations like lookup and removal are O(1), so it is very efficient. However, it has the same
problem as the list representation in that we are implicitly storing a boolean, and we should try

8

to make that more explicit.

List of lists
Some people used a list of lists to implement a sort of matrix, with a boolean representing
whether or not the room was clean. The list of lists would be indexed twice, corresponding to the
x and y coordinates of the tile, to see if that tile is clean.
e.g.,
[[True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True],
...
[True, True, True, True, True, True, True, True]]

This solution avoids the problem of implicit boolean storage, but it is less efficient in that
updating an entry requires indexing two lists. It can also be confusing -- knowing which
dimension to index first can be tricky.

Dictionary
A more natural way to represent this problem is using a dictionary, where the key is a tuple (x,
y) of the tile’s position, and the value is a boolean that is True if the tile is clean.

This is more flexible in that if we were asked to accommodate the states “clean”, “dirty”, and
“just a little messy”, we could switch the value stored in the dictionary to be, say, an integer in
the set {0, 1, 2}, or even the strings themselves.

Updating the cleanliness status of a tile would be a constant time operation (O(1)), and for every
tile, we are storing its coordinates and cleanliness status in the same dictionary entry, which is
clearer than the other representations.

Takeaway
In this course, we are trying to teach you to use the data structure most appropriate for the
problem at hand. For future problems, think about how best to store your data before just
picking the data structure that you happen to be most familiar with. :)

9

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

