
WELCOME!
(download slides and .py files and follow along!)

6.0001 LECTURE 1

16.0001 LECTURE 1

TODAY
 course info

 what is computation

 python basics

 mathematical operations

 python variables and types

 NOTE: slides and code files up before each lecture
o highly encourage you to download them before lecture

o take notes and run code files when I do

o bring computers to answer in-class practice exercises!

26.0001 LECTURE 1

COURSE INFO
Grading

◦ approx. 20% Quiz

◦ approx. 40% Final

◦ approx. 30% Problem Sets

◦ approx. 10% MITx Finger Exercises

36.0001 LECTURE 1

COURSE POLICIES
 Collaboration

◦ may collaborate with anyone

◦ required to write code independently and write names of
all collaborators on submission

◦ we will be running a code similarity program on all psets

 Extensions
◦ no extensions

◦ late days, see course website for details

◦ drop and roll weight of max two psets in final exam grade

◦ should be EMERGENCY use only

46.0001 LECTURE 1

RECITATIONS
not mandatory

 two flavors

1) Lecture review: review lecture material
o if you missed lecture

o if you need a different take on the same concepts

2) Problem solving: teach you how to solve programming
problems

o useful if you don’t know how to set up pseudocode from pset words

o we show a couple of harder questions

o walk you through how to approach solving the problem

o brainstorm code solution along with the recitation instructor

o will post solutions after

6.0001 LECTURE 1 5

FAST PACED COURSE
 Position yourself to succeed!

◦ read psets when they come out and come back to them later

◦ use late days in emergency situations

 New to programming? PRACTICE. PRACTICE? PRACTICE!
◦ can’t passively absorb programming as a skill

◦ download code before lecture and follow along

◦ do MITx finger exercises

◦ don’t be afraid to try out Python commands!

66.0001 LECTURE 1

PRACTICE

76.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

KNOWLEDGE
OF CONCEPTS

TOPICS
 represent knowledge with data structures

 iteration and recursion as computational metaphors

 abstraction of procedures and data types

 organize and modularize systems using object classes
and methods

 different classes of algorithms, searching and sorting

 complexity of algorithms

6.0001 LECTURE 1 8

WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations

a billion calculations per second!

◦ remembers results

100s of gigabytes of storage!

 What kinds of calculations?
◦ built-in to the language

◦ ones that you define as the programmer

 computers only know what you tell them

6.0001 LECTURE 1 9

TYPES OF KNOWLEDGE
 declarative knowledge is statements of fact.

◦ someone will win a Google
Cardboard before class ends

 imperative knowledge is a recipe or “how-to”.
1) Students sign up for raffle

2) Ana opens her IDE

3) Ana chooses a random number between 1st and nth responder

4) Ana finds the number in the responders sheet. Winner!

6.0001 LECTURE 1 10

A NUMERICAL EXAMPLE
 square root of a number x is y such that y*y = x

 recipe for deducing square root of a number x (16)
1) Start with a guess, g

2) If g*g is close enough to x, stop and say g is the
answer

3) Otherwise make a new guess by averaging g and x/g

4) Using the new guess, repeat process until close enough

6.0001 LECTURE 1 11

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

WHAT IS A RECIPE

1) sequence of simple steps

2) flow of control process that specifies when each
step is executed

3) a means of determining when to stop

1+2+3 = an algorithm!

6.0001 LECTURE 1 12

COMPUTERS ARE MACHINES
 how to capture a recipe in a mechanical process

 fixed program computer
◦ calculator

 stored program computer
◦ machine stores and executes instructions

6.0001 LECTURE 1 13

BASIC MACHINE ARCHITECTURE

6.0001 LECTURE 1 14

MEMORY

CONTROL

UNIT

ARITHMETIC

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.0001 LECTURE 1 15

BASIC PRIMITIVES
 Turing showed that you can compute anything using 6
primitives

 modern programming languages have more
convenient set of primitives

 can abstract methods to create new primitives

 anything computable in one language is computable in
any other programming language

6.0001 LECTURE 1 16

CREATING RECIPES
 a programming language provides a set of primitive
operations

 expressions are complex but legal combinations of
primitives in a programming language

 expressions and computations have values and
meanings in a programming language

6.0001 LECTURE 1 17

ASPECTS OF LANGUAGES
 primitive constructs

◦ English: words

◦ programming language: numbers, strings, simple
operators

6.0001 LECTURE 1 18

Word Cloud copyright Michael Twardos, All Right Reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Word Cloud copyright unknown, All Right Reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

https://www.blogger.com/profile/13059549809775325178
https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/
http://1.bp.blogspot.com/-JG9yJyFtVJ8/TklEax76aCI/AAAAAAAAB6I/jviw0P9nJsI/s1600/Screen%2Bshot%2B2011-07-24%2Bat%2B12.24.01%2BPM.png

ASPECTS OF LANGUAGES
 syntax

◦ English: "cat dog boy" not syntactically valid

"cat hugs boy" syntactically valid

◦ programming language: "hi"5 not syntactically valid

3.2*5 syntactically valid

6.0001 LECTURE 1 19

ASPECTS OF LANGUAGES
 static semantics is which syntactically valid strings
have meaning
◦ English: "I are hungry" syntactically valid

but static semantic error

◦ programming language: 3.2*5 syntactically valid

3+"hi" static semantic error

6.0001 LECTURE 1 20

ASPECTS OF LANGUAGES
 semantics is the meaning associated with a
syntactically correct string of symbols with no static
semantic errors
◦ English: can have many meanings "Flying planes
can be dangerous"

◦ programming languages: have only one meaning but may
not be what programmer intended

6.0001 LECTURE 1 21

WHERE THINGS GO WRONG
 syntactic errors

◦ common and easily caught

 static semantic errors
◦ some languages check for these before running program

◦ can cause unpredictable behavior

 no semantic errors but different meaning than what
programmer intended
◦ program crashes, stops running

◦ program runs forever

◦ program gives an answer but different than expected

6.0001 LECTURE 1 22

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do
something

 can be typed directly in a shell or stored in a file that
is read into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda

6.0001 LECTURE 1 23

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things
programs can do to them
◦ Ana is a human so she can walk, speak English, etc.

◦ Chewbacca is a wookie so he can walk, “mwaaarhrhh”, etc.

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.0001 LECTURE 1 24

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

PRINTING TO CONSOLE
 to show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.0001 LECTURE 1 27

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1 28

OPERATORS ON ints and floats
 i+j the sum

 i-j the difference

 i*j the product

 i/j division

 i%j the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these
operations first

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.0001 LECTURE 1 30

BINDING VARIABLES AND
VALUES
 equal sign is an assignment of a value to a variable
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by
invoking the name, by typing pi

6.0001 LECTURE 1 31

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.0001 LECTURE 1 32

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

area of circle

area = pi*(radius**2)

radius = radius+1

6.0001 LECTURE 1 33

CHANGING BINDINGS
 can re-bind variable names using new assignment
statements

 previous value may still stored in memory but lost the
handle for it

 value for area does not change until you tell the
computer to do the calculation again

6.0001 LECTURE 1 34

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

