
UNDERSTANDING
PROGRAM
EFFICIENCY: 1
(download slides and .py files and follow along!)

6.0001 LECTURE 10

6.0001	LECTURE	10	 1	

Today
§ 	Measuring	orders	of	growth	of	algorithms	

§ 	Big	“Oh”	notaAon	
§ 	Complexity	classes	

6.0001	LECTURE	10	 2	

WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS
§ 	computers	are	fast	and	geGng	faster	–	so	maybe	efficient	
programs	don’t	maLer?	
◦  but	data	sets	can	be	very	large	(e.g.,	in	2014,	Google	served	
30,000,000,000,000	pages,	covering	100,000,000	GB	–	how	long	to	
search	brute	force?)	

◦  thus,	simple	soluAons	may	simply	not	scale	with	size	in	acceptable	
manner	

§ 

§ 	separate	!me	and	space	efficiency	of	a	program	
§ 	tradeoff	between	them:	
◦  can	someAmes	pre-compute	results	are	stored;	then	use	“lookup”	to	
retrieve	(e.g.,	memoizaAon	for	Fibonacci)	

◦ will	focus	on	Ame	efficiency	

6.0001	LECTURE	10	 3	

	how	can	we	decide	which	opAon	for	program	is	most	efficient?	

WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS
Challenges	in	understanding	efficiency	of	soluAon	to	a	
computaAonal	problem:	

§ 	a	program	can	be	implemented	in	many	different	
ways	

§ 	you	can	solve	a	problem	using	only	a	handful	of	
different	algorithms	

§ 	would	like	to	separate	choices	of	implementaAon	
from	choices	of	more	abstract	algorithm	

6.0001	LECTURE	10	 4	

HOW TO EVALUATE
EFFICIENCY OF PROGRAMS
§ 	measure	with	a	!mer	

§ 	count	the	operaAons	
§ 	abstract	noAon	of	order	of	growth	

6.0001	LECTURE	10	 5	

TIMING A PROGRAM
§ 	use	Ame	module	

§ 	recall	that	
!imporAng	means	to	

bring	in	that	class	 def c_to_f(c):!

into	your	own	file	

 return c*9/5 + 32 !
!

§	 start	clock	 t0 = time.clock()!
§ 	call	funcAon	 c_to_f(100000)!

t1 = time.clock() - t0!
§ 	stop	clock	 Print("t =", t, ":", t1, "s,”)
	

6.0001	LECTURE	10	 6	

import time!

!

TIMING PROGRAMS IS
INCONSISTENT
§ 	GOAL:	to	evaluate	different	algorithms	
§ 	running	Ame	varies	between	algorithms	
§ 	running	Ame	varies	between	implementa!ons
§ 	running	Ame	varies	between	computers	
§ 	running	Ame	is	not	predictable	based	on	small	
inputs	

	

§ 	Ame	varies	for	different	inputs	but		
	cannot	really	express	a	relaAonship		
	between	inputs	and	Ame	

6.0001	LECTURE	10	 7	

COUNTING OPE
§ 	assume	these	steps	take	
constant	!me:	
•  	mathemaAcal	operaAons	
•  	comparisons	
•  	assignments	
•  	accessing	objects	in	memor

• 	then	count	the	number	of	
operaAons	executed	as	
funcAon	of	size	of	input	

RATIONS
def c_to_f(c):!
 return c*9.0/5 + 32 !
!
def mysum(x):!
 total = 0!

ange(x+1):!
+= i!

 for i in r
 total y	 return tot

mysum	à	1+3

al!

6.0001	LECTURE	10	 8	

x	ops	

COUNTING OPERATIONS IS
BETTER, BUT STILL…
§ 	GOAL:	to	evaluate	different	algorithms	

§ 	count	depends	on	algorithm	

§ 	count	depends	on	implementa!ons	

§ 	count	independent	of	computers	

§ 	no	clear	definiAon	of	which	opera!ons	to	count	

§ 	count	varies	for	different	inputs	and			
	can	come	up	with	a	relaAonship		
	between	inputs	and	the	count	

6.0001	LECTURE	10	 9	

STILL NEED A BETTER WAY
• 	Aming	and	counAng	evaluate	implementa!ons	

• 	Aming	evaluates	machines	

• 	want	to	evaluate	algorithm	

• 	want	to	evaluate	scalability	
• 	want	to	evaluate	in	terms	of	input	size	

6.0001	LECTURE	10	 10	

STILL NEED A BETTER WAY
§ 	Going	to	focus	on	idea	of	counAng	operaAons	in	an	
algorithm,	but	not	worry	about	small	variaAons	in	
implementaAon	(e.g.,	whether	we	take	3	or	4	primiAve	
operaAons	to	execute	the	steps	of	a	loop)	
§ 	Going	to	focus	on	how	algorithm	performs	when	size	
of	problem	gets	arbitrarily	large	
§ 	Want	to	relate	Ame	needed	to	complete	a	
computaAon,	measured	this	way,	against	the	size	of	
the	input	to	the	problem	
§ 	Need	to	decide	what	to	measure,	given	that	actual	
number	of	steps	may	depend	on	specifics	of	trial		

6.0001	LECTURE	10	 11	

NEED TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION
§ 	want	to	express	efficiency	in	terms	of	size	of	input,	so	
need	to	decide	what	your	input	is	

§ 	could	be	an	integer		
		--	mysum(x)

§ 	could	be	length	of	list		
		--	list_sum(L)

§ 	you	decide	when	mulAple	parameters	to	a	funcAon	
		--	search_for_elmt(L, e)

6.0001	LECTURE	10	 12	

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS
§ 	a	funcAon	that	searches	for	an	element	in	a	list	
def search_for_elmt(L, e):!
 for i in L:!
 if i == e:!
 return True!
 return False!

§ 	when	e	is	first	element	in	the	list	à	BEST	CASE	

§ 	when	e	is	not	in	list	à	WORST	CASE	

§ 	when	look	through	about	half	of	the	elements	in	
list	à	AVERAGE	CASE	

§ 	want	to	measure	this	behavior	in	a	general	way	

6.0001	LECTURE	10	 13	

BEST, AVERAGE, WORST CASES
§ 	suppose	you	are	given	a	list	L	of	some	length	len(L)
§ 	best	case:	minimum	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L)
•  	constant	for	search_for_elmt
•  	first	element	in	any	list	

§ 	average	case:	average	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L)
•  	pracAcal	measure	

§ 	worst	case:	maximum	running	Ame	over	all	possible	inputs	
of	a	given	size,	le
•  	linear	in	length	of

n(L)
	list	for	search_for_elmt

•  	must	search	enAre	list	and	not	find	it	

6.0001	LECTURE	10	 14	

ORDERS OF GROWTH
Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	!me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	Aght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	Ame	(which	secAon	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	!ght	upper	bound	on	growth,	as	
func!on	of	size	of	input,	in	worst	case	

6.0001	LECTURE	10	 15	

MEASURING ORDER OF
GROWTH: BIG OH NOTATION
§ 	Big	Oh	notaAon	measures	an	upper	bound	on	the	
asympto!c	growth,	oien	called	order	of	growth	

§ 	Big	Oh	or	O()	is	used	to	describe	worst	case	
•  	worst	case	occurs	oien	and	is	the	boLleneck	when	a	
program	runs	

•  	express	rate	of	growth	of	program	relaAve	to	the	input	
size	

•  	evaluate	algorithm	NOT	machine	or	implementaAon	

	 6.0001	LECTURE	10	 16	

	

EXACT STEPS vs O()
def fact_iter(n):!
 """assumes n an int >= 0"""!
 answer = 1!
 while n > 1:!
 answer *= n!
 n -= 1!
 return answer!

§ 	computes	factorial	
§ 	number	of	steps:	 		
§ 	worst	case	asymptoAc	complexity:		

•  	ignore	addiAve	constants	
•  	ignore	mulAplicaAve	constants	

6.0001	LECTURE	10	 17	

WHAT DOES O(N) MEASURE?
§ 	Interested	in	describing	how	amount	of	Ame	needed	
grows	as	size	of	(input	to)	problem	grows	

§ 	Thus,	given	an	expression	for	the	number	of	
operaAons	needed	to	compute	an	algorithm,	want	to	
know	asymptoAc	behavior	as	size	of	problem	gets	large	

§ 	Hence,	will	focus	on	term	that	grows	most	rapidly	in	a	
sum	of	terms	

§ 	And	will	ignore	mulAplicaAve	constants,	since	want	to	
know	how	rapidly	Ame	required	increases	as	increase	
size	of	input	

6.0001	LECTURE	10	 18	

SIMPLIFICATION EXAMPLES
§ 	drop	constants	and	mulAplicaAve	factors	
§ 	focus	on	dominant	terms	

 : n2	O(n2)	 + 2n + 2

	O(n2)	 : n2 + 100000n + 31000

	O(n)	 : log(n) + n + 4

O(n	log	n)
	 : 0.0001*n*log(n) + 300n

	O(3n)	 : 2n30 + 3n

6.0001	LECTURE	10	 19	

TYPES OF ORDERS OF
GROWTH

6.0001	LECTURE	10	 20	

ANALYZING PROGRAMS AND
THEIR COMPLEXITY
§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Addi!on	for	O():		
•  	used	with	sequen!al	statements	
•  	O(f(n))	+	O(g(n))	is	O(f(n)	+	g(n))	
•  	for	example,	 		
 for i in range(n):!
 print('a')!
 for j in range(n*n):!
 print('b')!

is	O(n)	+	O(n*n)	=	O(n+n2)	=	O(n2)	because	of	dominant	term	
6.0001	LECTURE	10	 21	

ANALYZING PROGRAMS AND
THEIR COMPLEXITY
§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Mul!plica!on	for	O():		
•  	used	with	nested	statements/loops	
•  	O(f(n))	*	O(g(n))	is	O(f(n)	*	g(n))	
•  	for	example,	 		
 for i in range(n):!
 for j in range(n):!
 print('a')!

is	O(n)*O(n)	=	O(n*n)	=	O(n2)	because	the	outer	loop	goes	n	
Ames	and	the	inner	loop	goes	n	Ames	for	every	outer	loop	iter.	

6.0001	LECTURE	10	 22	

COMPLEXITY CLASSES
§ 	O(1)	denotes	constant	running	Ame	
§ 	O(log	n)	denotes	logarithmic	running	Ame	
§ 	O(n)	denotes	linear	running	Ame	
§ 	O(n	log	n)	denotes	log-linear	running	Ame	
§ 	O(nc)		denotes	polynomial	running	Ame	(c	is	a	
constant)	
§ 	O(cn)	denotes	exponenAal	running	Ame	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)	

6.0001	LECTURE	10	 23	

COMPLEXITY CLASSES
ORDERED LOW TO HIGH
	

	O(1) :	
	 								
	O(log n) :	
	 								
	O(n) :	
	 								
	O(n log n):	
	 								
	O

	 	
	O

(nc) :	
								

(cn) :	

	 			constant	

	logarithmic		

	 						linear	

		loglinear		 	

	 	polynomial	

	exponenAal		

6.0001	LECTURE	10	 24	

COMPLEXITY GROWTH
CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506
00228229
40149670
3205376	

1071508607186267320948425049060
0018105614048117055336074437503
8837035105112493612249319837881
5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	

Good	luck!!	

6.0001	LECTURE	10	 25	

LINEAR COMPLEXITY
§ 	Simple	iteraAve	loop	algorithms	are	typically	linear	in
complexity	

	

6.0001	LECTURE	10	 26	

LINEAR SEARCH
ON UNSORTED LIST
def linear_search(L, e):!
 found = False!
 for i in range(len(L)):!
 if e == L[i]:!
 found = True!
 return found!

	

§ 	must	look	through	all	elements	to	decide	it’s	not	there	

§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
◦ O(1	+	4n	+	1)	=	O(4n	+	2)	=	O(n)	

§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 27	

CONSTANT TIME LIST ACCESS
§ 	if	list	is	all	ints	
◦  	ith	element	at		
◦  base	+	4*i	

§ if	list	is	heterogeneous	
◦  	indirecAon		
◦  	references	to	other	objects	

…	

…	

6.0001	LECTURE	12	 28	

LINEAR SEARCH
ON SORTED LIST
def search(L, e):!
 for i in range(len(L)):!
 if L[i] == e:!
 return True!
 if L[i] > e:!
 return False!
 return False	
§ 	must	only	look	unAl	reach	a	number	greater	than	e	
§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		
§ 	NOTE:	order	of	growth	is	same,	though	run	Ame	may	
differ	for	two	search	methods	

6.0001	LECTURE	12	 29	

LINEAR COMPLEXITY
§ 	searching	a	list	in	sequence	to	see	if	an	element	is	present	
§ 	add	characters	of	a	string,	assumed	to	be	composed	of	
decimal	digits	
def addDigits(s):!

 val = 0!

 for c in s:!

 val += int(c)!

 return val!

§ 	O(len(s))	

6.0001	LECTURE	10	 30	

LINEAR COMPLEXITY
§ 	complexity	oien	depends	on	number	of	iteraAons	
def fact_iter(n):!

 prod = 1!

 for i in range(1, n+1):!

 prod *= i!

 return prod!

§ 	number	of	Ames	around	loop	is	n	
§ 	number	of	operaAons	inside	loop	is	a	constant	(in	this	case,	3	–	
set	i,	mulAply,	set	prod)	
◦  O(1	+	3n	+	1)	=	O(3n	+	2)	=	O(n)	

§ 	overall	just	O(n)	

6.0001	LECTURE	10	 31	

NESTED LOOPS
§ 	simple	loops	are	linear	in	complexity	

§ 	what	about	loops	that	have	loops	within	them?	

6.0001	LECTURE	10	 32	

QUADRATIC COMPLEXITY
determine	if	one	list	is	subset	of	second,	i.e.,	every	element	
of	first,	appears	in	second	(assume	no	duplicates)	
!
def isSubset(L1, L2):!
 for e1 in L1:!
 matched = False!
 for e2 in L2:!
 if e1 == e2:!
 matched = True!
 break!
 if not matched:!
 return False!
 return True!

6.0001	LECTURE	10	 33	

QUADRATIC COMPLEXITY
def isSubset(L1, L2):!
 for e1 in L1:!
 matched = False!
 for e2 in L2:!
 if e1 == e2:!
 matched =
 break!
 if not matched:!
 return False!
 return True!

	

	 outer	loop	executed	len(L1)	
Ames	

	 each	iteraAon	will	execute	
inner	loop	up	to	len(L2)	
Ames,	with	constant	number	True!
of	operaAons	

	 O(len(L1)*len(L2))	
	 worst	case	when	L1	and	L2	
same	length,	none	of	
elements	of	L1	in	L2	

	 O(len(L1)2)	

6.0001	LECTURE	10	 34	

QUADRATIC COMPLEXITY
find	intersecAon	of	two	lists,	return	a	list	with	each	element	
appearing	only	once!

def intersect(L1, L2):!
 tmp = []!
 for e1 in L1:!
 for e2 in L2:!
 if e1 == e2:!
 tmp.append(e1)!
 res = []!
 for e in tmp:!
 if not(e in res):!
 res.append(e)!
 return res!

6.0001	LECTURE	10	 35	

QUADRATIC COMPLEXITY
def intersect(L1, L2):!
 tmp = []!
 for e1 in L1:!
 for e2 in L2:!
 if e1 == e2:!
 tmp.append(e
 res = []!
 for e in tmp:!
 if not(e in res):!
 res.append(e)!
 return res!

	

	 first	nested	loop	takes	
len(L1)*len(L2)	steps	
	 second	loop	takes	at	
most	len(L1)	steps	

1)! 	 determining	if	element	
in	list	might	take	len(L1)	
steps	
	 if	we	assume	lists	are	of	
roughly	same	length,	
then	
	 O(len(L1)^2)	

6.0001	LECTURE	10	 36	

O() FOR NESTED LOOPS
def g(n):!
 """ assume n >= 0 """!
 x = 0!
 for i in range(n):!
 for j in range(n):!
 x += 1!
 return x!

	
§ 	computes	n2	very	inefficiently	
§ 	when	dealing	with	nested	loops,	look	at	the	ranges	
§ 	nested	loops,	each	itera!ng	n	!mes	
§ 	O(n2)	

6.0001	LECTURE	10	 37	

THIS TIME AND NEXT TIME
§ 	have	seen	examples	of	loops,	and	nested	loops	

§ 	give	rise	to	linear	and	quadraAc	complexity	algorithms	

§ 	next	Ame,	will	more	carefully	examine	examples	from	
each	of	the	different	complexity	classes	

6.0001	LECTURE	10	 38	

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

