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Today
§ 	Measuring	orders	of	growth	of	algorithms	

§ 	Big	“Oh”	notaAon	
§ 	Complexity	classes	

6.0001	LECTURE	10	 2	



WANT TO UNDERSTAND 
EFFICIENCY OF PROGRAMS
§ 	computers	are	fast	and	geGng	faster	–	so	maybe	efficient	
programs	don’t	maLer?	
◦  but	data	sets	can	be	very	large	(e.g.,	in	2014,	Google	served	
30,000,000,000,000	pages,	covering	100,000,000	GB	–	how	long	to	
search	brute	force?)	

◦  thus,	simple	soluAons	may	simply	not	scale	with	size	in	acceptable	
manner	

§ 

§ 	separate	!me	and	space	efficiency	of	a	program	
§ 	tradeoff	between	them:	
◦  can	someAmes	pre-compute	results	are	stored;	then	use	“lookup”	to	
retrieve	(e.g.,	memoizaAon	for	Fibonacci)	

◦ will	focus	on	Ame	efficiency	
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	how	can	we	decide	which	opAon	for	program	is	most	efficient?	



WANT TO UNDERSTAND 
EFFICIENCY OF PROGRAMS
Challenges	in	understanding	efficiency	of	soluAon	to	a	
computaAonal	problem:	

§ 	a	program	can	be	implemented	in	many	different	
ways	

§ 	you	can	solve	a	problem	using	only	a	handful	of	
different	algorithms	

§ 	would	like	to	separate	choices	of	implementaAon	
from	choices	of	more	abstract	algorithm	
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HOW TO EVALUATE 
EFFICIENCY OF PROGRAMS
§ 	measure	with	a	!mer	

§ 	count	the	operaAons	
§ 	abstract	noAon	of	order	of	growth	

6.0001	LECTURE	10	 5	



TIMING A PROGRAM
§ 	use	Ame	module	

§ 	recall	that	
!imporAng	means	to	

bring	in	that	class	 def c_to_f(c):!

into	your	own	file	

    return c*9/5 + 32 !
!

§	 start	clock	 t0 = time.clock()!
§ 	call	funcAon	 c_to_f(100000)!

t1 = time.clock() - t0!
§ 	stop	clock	 Print("t =", t, ":", t1, "s,”) 
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import time!

!



TIMING PROGRAMS IS 
INCONSISTENT
§ 	GOAL:	to	evaluate	different	algorithms	
§ 	running	Ame	varies	between	algorithms	
§ 	running	Ame	varies	between	implementa!ons
§ 	running	Ame	varies	between	computers	
§ 	running	Ame	is	not	predictable	based	on	small	
inputs	

	

§ 	Ame	varies	for	different	inputs	but		
	cannot	really	express	a	relaAonship		
	between	inputs	and	Ame	
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COUNTING OPE
§ 	assume	these	steps	take	
constant	!me:	
•  	mathemaAcal	operaAons	
•  	comparisons	
•  	assignments	
•  	accessing	objects	in	memor

• 	then	count	the	number	of	
operaAons	executed	as	
funcAon	of	size	of	input	

RATIONS
def c_to_f(c):!
    return c*9.0/5 + 32 !
!
def mysum(x):!
    total = 0!

ange(x+1):!
+= i!

    for i in r
        total y	     return tot
 
 

mysum	à	1+3

al!
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COUNTING OPERATIONS IS 
BETTER, BUT STILL…
§ 	GOAL:	to	evaluate	different	algorithms	

§ 	count	depends	on	algorithm	

§ 	count	depends	on	implementa!ons	

§ 	count	independent	of	computers	

§ 	no	clear	definiAon	of	which	opera!ons	to	count	

§ 	count	varies	for	different	inputs	and			
	can	come	up	with	a	relaAonship		
	between	inputs	and	the	count	
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STILL NEED A BETTER WAY
• 	Aming	and	counAng	evaluate	implementa!ons	

• 	Aming	evaluates	machines	

• 	want	to	evaluate	algorithm	

• 	want	to	evaluate	scalability	
• 	want	to	evaluate	in	terms	of	input	size	
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STILL NEED A BETTER WAY
§ 	Going	to	focus	on	idea	of	counAng	operaAons	in	an	
algorithm,	but	not	worry	about	small	variaAons	in	
implementaAon	(e.g.,	whether	we	take	3	or	4	primiAve	
operaAons	to	execute	the	steps	of	a	loop)	
§ 	Going	to	focus	on	how	algorithm	performs	when	size	
of	problem	gets	arbitrarily	large	
§ 	Want	to	relate	Ame	needed	to	complete	a	
computaAon,	measured	this	way,	against	the	size	of	
the	input	to	the	problem	
§ 	Need	to	decide	what	to	measure,	given	that	actual	
number	of	steps	may	depend	on	specifics	of	trial		
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NEED TO CHOOSE WHICH INPUT TO 
USE TO EVALUATE A FUNCTION
§ 	want	to	express	efficiency	in	terms	of	size	of	input,	so	
need	to	decide	what	your	input	is	

§ 	could	be	an	integer		
		--	mysum(x) 

§ 	could	be	length	of	list		
		--	list_sum(L) 

§ 	you	decide	when	mulAple	parameters	to	a	funcAon	
		--	search_for_elmt(L, e) 
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DIFFERENT INPUTS CHANGE 
HOW THE PROGRAM RUNS
§ 	a	funcAon	that	searches	for	an	element	in	a	list	
def search_for_elmt(L, e):!
    for i in L:!
        if i == e:!
            return True!
    return False!

§ 	when	e	is	first	element	in	the	list	à	BEST	CASE	

§ 	when	e	is	not	in	list	à	WORST	CASE	

§ 	when	look	through	about	half	of	the	elements	in	
list	à	AVERAGE	CASE	

§ 	want	to	measure	this	behavior	in	a	general	way	
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BEST, AVERAGE, WORST CASES
§ 	suppose	you	are	given	a	list	L	of	some	length	len(L) 
§ 	best	case:	minimum	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L) 
•  	constant	for	search_for_elmt 
•  	first	element	in	any	list	

§ 	average	case:	average	running	Ame	over	all	possible	inputs	
of	a	given	size,	len(L) 
•  	pracAcal	measure	

§ 	worst	case:	maximum	running	Ame	over	all	possible	inputs	
of	a	given	size,	le
•  	linear	in	length	of

n(L) 
	list	for	search_for_elmt 

•  	must	search	enAre	list	and	not	find	it	
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ORDERS OF GROWTH
Goals:		
§ 	want	to	evaluate	program’s	efficiency	when	input	is	very	big	
§ 	want	to	express	the	growth	of	program’s	run	!me	as	input	
size	grows	
§ 	want	to	put	an	upper	bound	on	growth	–	as	Aght	as	possible	
§ 	do	not	need	to	be	precise:	“order	of”	not	“exact”	growth	
§ 	we	will	look	at	largest	factors	in	run	Ame	(which	secAon	of	
the	program	will	take	the	longest	to	run?)	
§ 	thus,	generally	we	want	!ght	upper	bound	on	growth,	as	
func!on	of	size	of	input,	in	worst	case	
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MEASURING ORDER OF 
GROWTH: BIG OH NOTATION
§ 	Big	Oh	notaAon	measures	an	upper	bound	on	the	
asympto!c	growth,	oien	called	order	of	growth	

§ 	Big	Oh	or	O()	is	used	to	describe	worst	case	
•  	worst	case	occurs	oien	and	is	the	boLleneck	when	a	
program	runs	

•  	express	rate	of	growth	of	program	relaAve	to	the	input	
size	

•  	evaluate	algorithm	NOT	machine	or	implementaAon	
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EXACT STEPS vs O()
def fact_iter(n):!
    """assumes n an int >= 0"""!
    answer = 1!
    while n > 1:!
        answer *= n!
        n -= 1!
    return answer!

§ 	computes	factorial	
§ 	number	of	steps:	 		
§ 	worst	case	asymptoAc	complexity:		

•  	ignore	addiAve	constants	
•  	ignore	mulAplicaAve	constants	
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WHAT DOES O(N) MEASURE?
§ 	Interested	in	describing	how	amount	of	Ame	needed	
grows	as	size	of	(input	to)	problem	grows	

§ 	Thus,	given	an	expression	for	the	number	of	
operaAons	needed	to	compute	an	algorithm,	want	to	
know	asymptoAc	behavior	as	size	of	problem	gets	large	

§ 	Hence,	will	focus	on	term	that	grows	most	rapidly	in	a	
sum	of	terms	

§ 	And	will	ignore	mulAplicaAve	constants,	since	want	to	
know	how	rapidly	Ame	required	increases	as	increase	
size	of	input	
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SIMPLIFICATION EXAMPLES
§ 	drop	constants	and	mulAplicaAve	factors	
§ 	focus	on	dominant	terms	

 : n2	O(n2)	  + 2n + 2 

	O(n2)	 : n2 + 100000n + 31000  

	O(n)	 : log(n) + n + 4 

O(n	log	n)
	 : 0.0001*n*log(n) + 300n 

	O(3n)	 : 2n30 + 3n  
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TYPES OF ORDERS OF 
GROWTH
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Addi!on	for	O():		
•  	used	with	sequen!al	statements	
•  	O(f(n))	+	O(g(n))	is	O(	f(n)	+	g(n)	)	
•  	for	example,	 		
  for i in range(n):!
      print('a')!
  for j in range(n*n):!
      print('b')!

is	O(n)	+	O(n*n)	=	O(n+n2)	=	O(n2)	because	of	dominant	term	
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ 	combine	complexity	classes	

•  	analyze	statements	inside	funcAons	
•  	apply	some	rules,	focus	on	dominant	term	

Law	of	Mul!plica!on	for	O():		
•  	used	with	nested	statements/loops	
•  	O(f(n))	*	O(g(n))	is	O(	f(n)	*	g(n)	)	
•  	for	example,	 		
  for i in range(n):!
      for j in range(n):!
          print('a')!

is	O(n)*O(n)	=	O(n*n)	=	O(n2)	because	the	outer	loop	goes	n	
Ames	and	the	inner	loop	goes	n	Ames	for	every	outer	loop	iter.	
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COMPLEXITY CLASSES
§ 	O(1)	denotes	constant	running	Ame	
§ 	O(log	n)	denotes	logarithmic	running	Ame	
§ 	O(n)	denotes	linear	running	Ame	
§ 	O(n	log	n)	denotes	log-linear	running	Ame	
§ 	O(nc)		denotes	polynomial	running	Ame	(c	is	a	
constant)	
§ 	O(cn)	denotes	exponenAal	running	Ame	(c	is	a	
constant	being	raised	to	a	power	based	on	size	of	
input)	
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COMPLEXITY CLASSES 
ORDERED LOW TO HIGH
	

	O(1)  :	
	 								
	O(log n)  :	
	 								
	O(n)  :	
	 								
	O(n log n):	
	 								
	O

	 	
	O

(nc)  :	
								

(cn)  :	

	 			constant	

	logarithmic		

	 						linear	

		loglinear		 	

	 	polynomial	

	exponenAal		
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COMPLEXITY GROWTH
CLASS	 n=10	 =	100	 =	1000	 =	1000000	

O(1)	 1	 1	 1	 1	

O(log	n)	 1	 2	 3	 6	

O(n)	 10	 100	 1000	 1000000	

O(n	log	n)	 10	 200	 3000	 6000000	

O(n^2)	 100	 10000	 1000000	 1000000000000	

O(2^n)	 1024	 12676506
00228229
40149670
3205376	

1071508607186267320948425049060
0018105614048117055336074437503
8837035105112493612249319837881
5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376	

Good	luck!!	
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LINEAR COMPLEXITY
§ 	Simple	iteraAve	loop	algorithms	are	typically	linear	in
complexity	
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LINEAR SEARCH  
ON UNSORTED LIST
def linear_search(L, e):!
    found = False!
    for i in range(len(L)):!
        if e == L[i]:!
            found = True!
    return found!

	

§ 	must	look	through	all	elements	to	decide	it’s	not	there	

§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
◦ O(1	+	4n	+	1)	=	O(4n	+	2)	=	O(n)	

§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		
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CONSTANT TIME LIST ACCESS
§ 	if	list	is	all	ints	
◦  	ith	element	at		
◦  base	+	4*i	

§ if	list	is	heterogeneous	
◦  	indirecAon		
◦  	references	to	other	objects	

…	

…	

6.0001	LECTURE	12	 28	



LINEAR SEARCH  
ON SORTED LIST
def search(L, e):!
    for i in range(len(L)):!
        if L[i] == e:!
            return True!
        if L[i] > e:!
            return False!
    return False	
§ 	must	only	look	unAl	reach	a	number	greater	than	e	
§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		
§ 	NOTE:	order	of	growth	is	same,	though	run	Ame	may	
differ	for	two	search	methods	
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LINEAR COMPLEXITY
§ 	searching	a	list	in	sequence	to	see	if	an	element	is	present	
§ 	add	characters	of	a	string,	assumed	to	be	composed	of	
decimal	digits	
def addDigits(s):!

    val = 0!

    for c in s:!

        val += int(c)!

    return val!

§ 	O(len(s))	
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LINEAR COMPLEXITY
§ 	complexity	oien	depends	on	number	of	iteraAons	
def fact_iter(n):!

    prod = 1!

    for i in range(1, n+1):!

        prod *= i!

    return prod!

§ 	number	of	Ames	around	loop	is	n	
§ 	number	of	operaAons	inside	loop	is	a	constant	(in	this	case,	3	–	
set	i,	mulAply,	set	prod)	
◦  O(1	+	3n	+	1)	=	O(3n	+	2)	=	O(n)	

§ 	overall	just	O(n)	
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NESTED LOOPS
§ 	simple	loops	are	linear	in	complexity	

§ 	what	about	loops	that	have	loops	within	them?	
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QUADRATIC COMPLEXITY
determine	if	one	list	is	subset	of	second,	i.e.,	every	element	
of	first,	appears	in	second	(assume	no	duplicates)	
!
def isSubset(L1, L2):!
    for e1 in L1:!
        matched = False!
        for e2 in L2:!
            if e1 == e2:!
                matched = True!
                break!
        if not matched:!
            return False!
    return True!
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QUADRATIC COMPLEXITY
def isSubset(L1, L2):!
    for e1 in L1:!
        matched = False!
        for e2 in L2:!
            if e1 == e2:!
                matched = 
                break!
        if not matched:!
            return False!
    return True!

	

	 outer	loop	executed	len(L1)	
Ames	

	 each	iteraAon	will	execute	
inner	loop	up	to	len(L2)	
Ames,	with	constant	number	True!
of	operaAons	

	 O(len(L1)*len(L2))	
	 worst	case	when	L1	and	L2	
same	length,	none	of	
elements	of	L1	in	L2	

	 O(len(L1)2)	
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QUADRATIC COMPLEXITY
find	intersecAon	of	two	lists,	return	a	list	with	each	element	
appearing	only	once!

def intersect(L1, L2):!
    tmp = []!
    for e1 in L1:!
        for e2 in L2:!
            if e1 == e2:!
                tmp.append(e1)!
    res = []!
    for e in tmp:!
        if not(e in res):!
            res.append(e)!
    return res!
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QUADRATIC COMPLEXITY
def intersect(L1, L2):!
    tmp = []!
    for e1 in L1:!
        for e2 in L2:!
            if e1 == e2:!
               tmp.append(e
    res = []!
    for e in tmp:!
        if not(e in res):!
            res.append(e)!
    return res!

	

	 first	nested	loop	takes	
len(L1)*len(L2)	steps	
	 second	loop	takes	at	
most	len(L1)	steps	

1)! 	 determining	if	element	
in	list	might	take	len(L1)	
steps	
	 if	we	assume	lists	are	of	
roughly	same	length,	
then	
	 O(len(L1)^2)	
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O() FOR NESTED LOOPS
def g(n):!
   """ assume n >= 0 """!
   x = 0!
   for i in range(n):!
      for j in range(n):!
         x += 1!
   return x!

	
§ 	computes	n2	very	inefficiently	
§ 	when	dealing	with	nested	loops,	look	at	the	ranges	
§ 	nested	loops,	each	itera!ng	n	!mes	
§ 	O(n2)	
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THIS TIME AND NEXT TIME
§ 	have	seen	examples	of	loops,	and	nested	loops	

§ 	give	rise	to	linear	and	quadraAc	complexity	algorithms	

§ 	next	Ame,	will	more	carefully	examine	examples	from	
each	of	the	different	complexity	classes	

6.0001	LECTURE	10	 38	



MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



