SEARCHING AND SORTING ALGORITHMS

(download slides and .py files and follow along!)

6.0001 LECTURE 12

6.0001 LECTURE 12

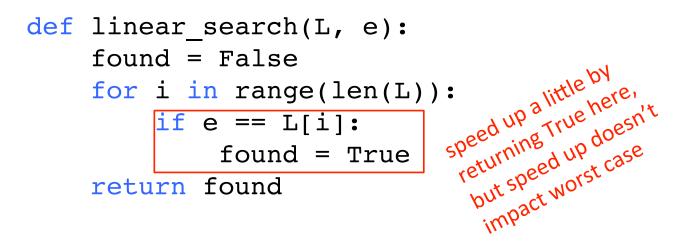
SEARCH ALGORITHMS

- search algorithm method for finding an item or group of items with specific properties within a collection of items
- collection could be implicit
 - example find square root as a search problem
 - exhaustive enumeration
 - bisection search
 - Newton-Raphson
- collection could be explicit
 - example is a student record in a stored collection of data?

SEARCHING ALGORITHMS

- linear search
 - brute force search (aka British Museum algorithm)
 - list does not have to be sorted
- bisection search
 - list MUST be sorted to give correct answer
 - saw two different implementations of the algorithm

LINEAR SEARCH ON UNSORTED LIST: RECAP



- must look through all elements to decide it's not there -Assumes we can
- O(len(L)) for the loop * O(1) to test if e == L[i]
- overall complexity is O(n) where n is len(L)

retrieve element

time

of list in constant

LINEAR SEARCH ON **SORTED** LIST: RECAP

```
def search(L, e):
    for i in range(len(L)):
        if L[i] == e:
            return True
        if L[i] > e:
            return False
    return False
```

- must only look until reach a number greater than e
- O(len(L)) for the loop * O(1) to test if e == L[i]
- overall complexity is O(n) where n is len(L)

USE BISECTION SEARCH: RECAP

- 1. Pick an index, i, that divides list in half
- 2. Ask if L[i] == e
- 3. If not, ask if L[i] is larger or smaller than e
- 4. Depending on answer, search left or right half of $\ L$ for e

A new version of a divide-and-conquer algorithm

- Break into smaller version of problem (smaller list), plus some simple operations
- Answer to smaller version is answer to original problem

BISECTION SEARCH IMPLEMENTATION: RECAP

```
def bisect search2(L, e):
    def bisect search helper(L, e, low, high):
        if high == low:
            return L[low] == e
        mid = (low + high)//2
        if L[mid] == e:
            return True
        elif L[mid] > e:
            if low == mid: #nothing left to search
                return False
            else:
                return bisect search helper(L, e, low, mid - 1)
        else:
            return bisect search helper(L, e, mid + 1, high)
    if len(L) == 0:
        return False
    else:
        return bisect search helper(L, e, 0, len(L) - 1)
```

COMPLEXITY OF BISECTION SEARCH: RECAP

bisect_search2 and its helper

- O(log n) bisection search calls
 - reduce size of problem by factor of 2 on each step
- pass list and indices as parameters
- list never copied, just re-passed as pointer
- constant work inside function
- \rightarrow O(log n)

SEARCHING A SORTED LIST -- n is len(L)

- using linear search, search for an element is O(n)
- using binary search, can search for an element in O(log n)
 - assumes the list is sorted!
- when does it make sense to sort first then search?
 - SORT + O(log n) < O(n) \rightarrow SORT < O(n) O(log n)
 - when sorting is less than O(n)
- NEVER TRUE!
 - to sort a collection of n elements must look at each one at least once!

AMORTIZED COST -- n is len(L)

- why bother sorting first?
- in some cases, may sort a list once then do many searches
- AMORTIZE cost of the sort over many searches
- **SORT +** K***O(**log n) < K***O(**n)

 \rightarrow for large K, **SORT time becomes irrelevant**, if cost of sorting is small enough

SORT ALGORITHMS

- Want to efficiently sort a list of entries (typically numbers)
- Will see a range of methods, including one that is quite efficient

MONKEY SORT

- aka bogosort, stupid sort, slowsort, permutation sort, shotgun sort
- to sort a deck of cards
 - throw them in the air
 - pick them up
 - are they sorted?
 - repeat if not sorted

COMPLEXITY OF BOGO SORT

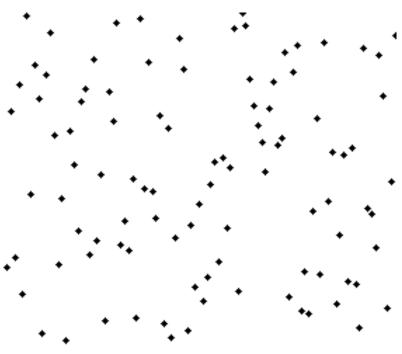
def bogo_sort(L):
 while not is_sorted(L):
 random.shuffle(L)

- best case: O(n) where n is len(L) to check if sorted
- worst case: O(?) it is unbounded if really unlucky

BUBBLE SORT

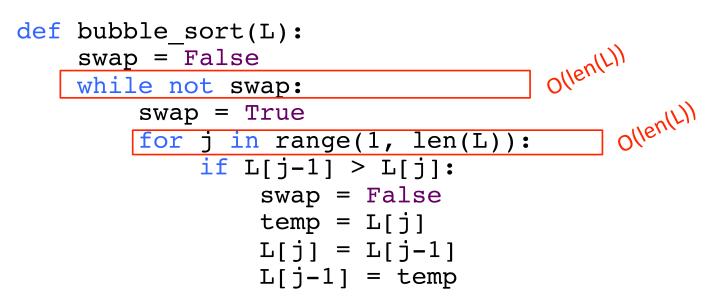
- compare consecutive pairs of elements
- swap elements in pair such that smaller is first
- when reach end of list, start over again
- stop when no more swaps have been made

 largest unsorted element always at end after pass, so at most n passes CC-BY Hydrargyrum https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif



6.0001 LECTURE 12

COMPLEXITY OF BUBBLE SORT



- inner for loop is for doing the comparisons
- outer while loop is for doing multiple passes until no more swaps
- O(n²) where n is len(L) to do len(L)-1 comparisons and len(L)-1 passes

SELECTION SORT

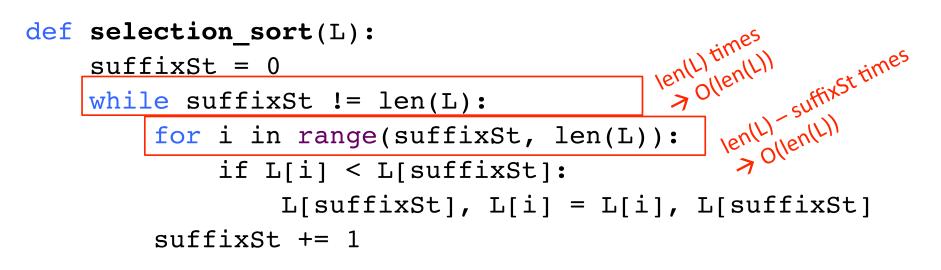
- first step
 - extract minimum element
 - swap it with element at index 0
- subsequent step
 - in remaining sublist, extract minimum element
 - swap it with the element at index 1
- keep the left portion of the list sorted
 - at i'th step, first i elements in list are sorted
 - all other elements are bigger than first i elements

ANALYZING SELECTION SORT

loop invariant

- given prefix of list L[0:i] and suffix L[i+1:len(L)], then prefix is sorted and no element in prefix is larger than smallest element in suffix
 - 1. base case: prefix empty, suffix whole list invariant true
 - induction step: move minimum element from suffix to end of prefix. Since invariant true before move, prefix sorted after append
 - 3. when exit, prefix is entire list, suffix empty, so sorted

COMPLEXITY OF SELECTION SORT

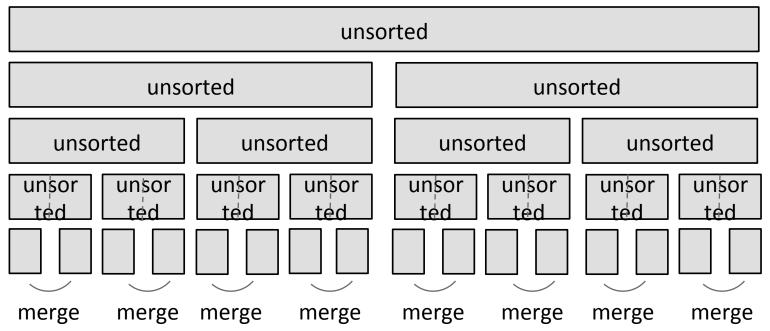


- outer loop executes len(L) times
- inner loop executes len(L) i times
- complexity of selection sort is O(n²) where n is len(L)

use a divide-and-conquer approach:

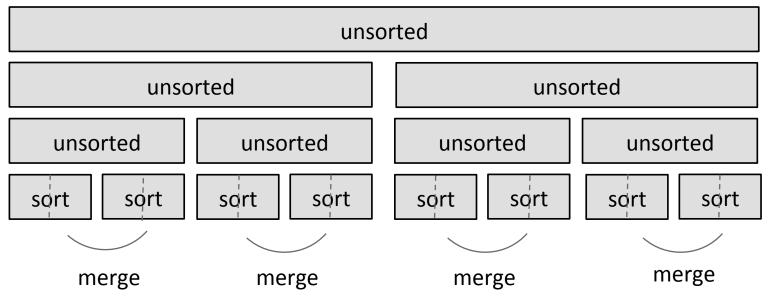
- 1. if list is of length 0 or 1, already sorted
- 2. if list has more than one element, split into two lists, and sort each
- 3. merge sorted sublists
 - 1. look at first element of each, move smaller to end of the result
 - 2. when one list empty, just copy rest of other list

divide and conquer



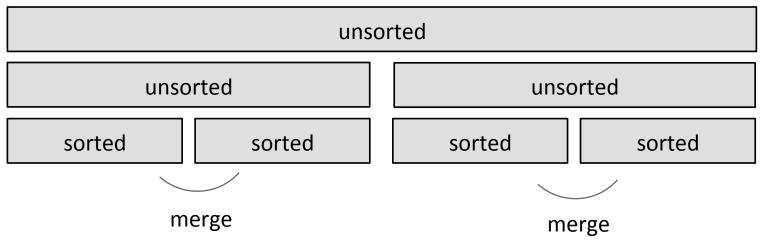
split list in half until have sublists of only 1 element

divide and conquer



merge such that sublists will be sorted after merge

divide and conquer



- merge sorted sublists
- sublists will be sorted after merge

divide and conquer



- merge sorted sublists
- sublists will be sorted after merge

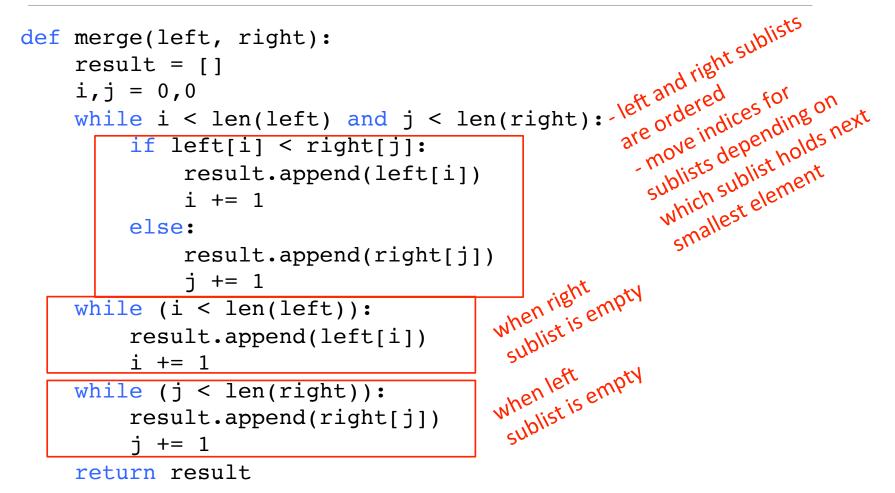
divide and conquer – done!

sorted

EXAMPLE OF MERGING

Left in list 1	Left in list 2	Compare	Result
[1]5,12,18,19,20]	23,4,17]	1-2	→①
[5]12,18,19,20]	(2)3,4,17]	5,2	— [⊉ ◯
(5) 12,18,19,20]	(3 4,17]	5,3	<u>[1,2]</u>
[5,12,18,19,20]	[4,17]	5, 4	[1,2,3]
[5,12,18,19,20]	[17]	5, 17	[1,2,3,4]
[12,18,19,20]	[17]	12, 17	[1,2,3,4,5]
[18,19,20]	[17]	18, 17	[1,2,3,4,5,12]
[18,19,20]	[]	18,	[1,2,3,4,5,12,17]
[]	[]		[1,2,3,4,5,12,17,18,19,20]

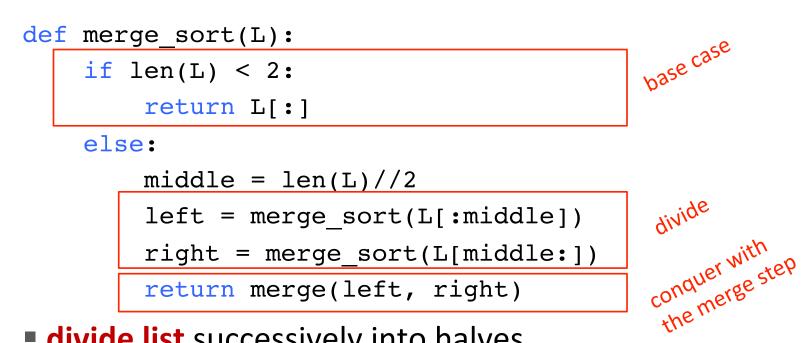
MERGING SUBLISTS STEP



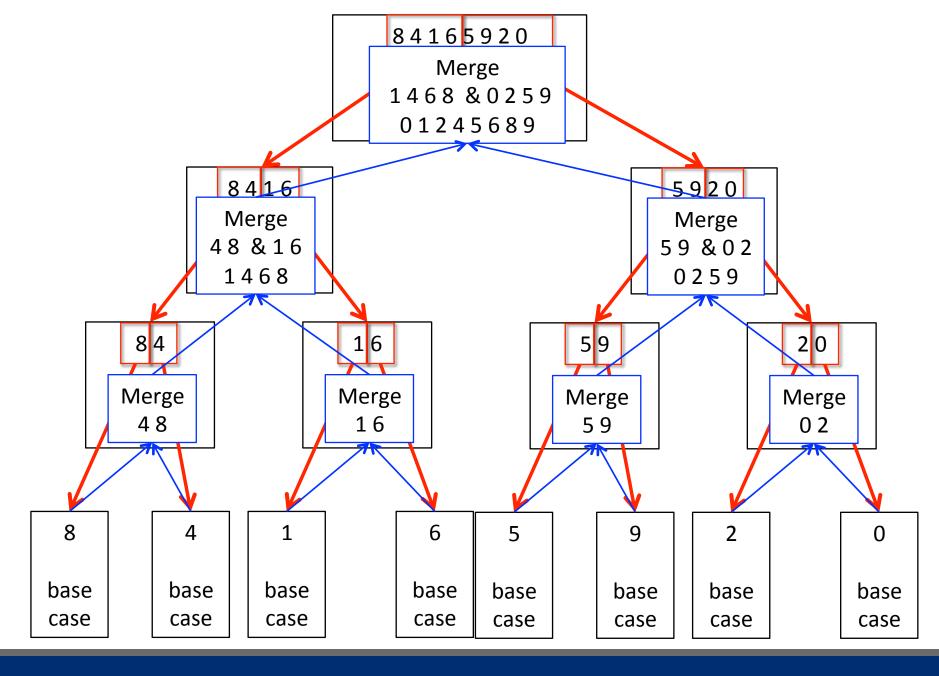
COMPLEXITY OF MERGING SUBLISTS STEP

- go through two lists, only one pass
- compare only smallest elements in each sublist
- O(len(left) + len(right)) copied elements
- O(len(longer list)) comparisons
- Inear in length of the lists

MERGE SORT ALGORITHM -- RECURSIVE



- divide list successively into halves
- depth-first such that conquer smallest pieces down one branch first before moving to larger pieces



6.0001 LECTURE 12

COMPLEXITY OF MERGE SORT

at first recursion level

- n/2 elements in each list
- O(n) + O(n) = O(n) where n is len(L)

at second recursion level

- n/4 elements in each list
- two merges \rightarrow O(n) where n is len(L)
- each recursion level is O(n) where n is len(L)
- dividing list in half with each recursive call
 O(log(n)) where n is len(L)
- overall complexity is O(n log(n)) where n is len(L)

SORTING SUMMARY -- n is len(L)

- bogo sort
 - randomness, unbounded O()
- bubble sort
 - O(n²)
- selection sort
 - O(n²)
 - guaranteed the first i elements were sorted
- merge sort
 - O(n log(n))
- O(n log(n)) is the fastest a sort can be

WHAT HAVE WE SEEN IN 6.0001?

KEY TOPICS

- represent knowledge with data structures
- iteration and recursion as computational metaphors
- abstraction of procedures and data types
- organize and modularize systems using object classes and methods
- different classes of algorithms, searching and sorting
- complexity of algorithms

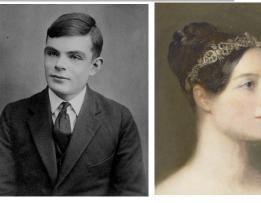
OVERVIEW OF COURSE

- Iearn computational modes of thinking
- - begin to master the art of computational problem solving
- make computers do what you want them to do

Hope we have started you down the path to being able to think and act like a computer scientist

WHAT DO COMPUTER SCIENTISTS DO?

- they think computationally
 - abstractions, algorithms, automated execution
- just like the three r's: reading,
 'riting, and 'rithmetic –
 computational thinking is
 becoming a fundamental skill that
 every well-educated person will
 need



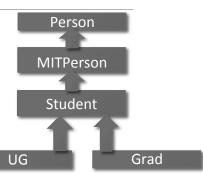
Alan Turing

Image in the Public Domain, courtesy of Wikipedia Commons. Ada Lovelace

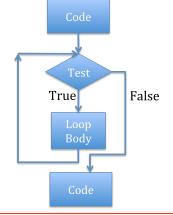
Image in the Public Domain, courtesy of Wikipedia Commons.

THE THREE A'S OF COMPUTATIONAL THINKING

- abstraction
 - choosing the right abstractions
 - operating in multiple layers of abstraction simultaneously
 - defining the relationships between the abstraction layers



- automation
 - think in terms of mechanizing our abstractions
 - mechanization is possible because we have precise and exacting notations and models; and because there is some "machine" that can interpret our notations
- algorithms
 - language for describing automated processes
 - also allows abstraction of details
 - language for communicating ideas & processes



def mergeSort(L, compare = operator.lt):
 if len(L) < 2:
 return L[:]
 else:
 middle = int(len(L)/2)
 left = mergeSort(L[:middle], compare)
 right = mergeSort(L[middle:], compare)</pre>

return merge(left, right, compare)

ASPECTS OF COMPUTATIONAL THINKING

- how difficult is this problem and how best can I solve it?
 - theoretical computer science gives precise meaning to these and related questions and their answers
- thinking recursively
 - reformulating a seemingly difficult problem into one which we know how to solve
 - reduction, embedding, transformation, simulation

O(*log n*) ; *O*(*n*) ; $O(n \log n);$ $O(n^2); O(c^n)$

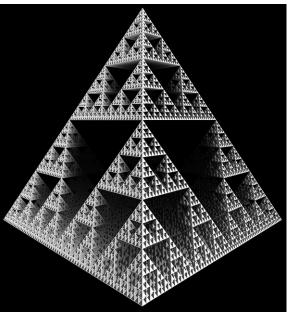


Image Licensed CC-BY, Courtesy of Robson# on Flickr.

MIT OpenCourseWare https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.