
TESTING, DEBUGGING, 
EXCEPTIONS, ASSERTIONS
(download slides and .py files and follow along!)

6.0001 LECTURE 7

6.0001 LECTURE 7 1



WE AIM FOR HIGH QUALITY –
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the 
ceiling. What do you do?

 check soup for bugs
• testing

 keep lid closed
• defensive 

programming

 clean kitchen
• eliminate source 

of bugs
Analogy thanks to Prof Srini Devadas

6.0001 LECTURE 7 2



DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output 

pairs to specification
• “It’s not working!”
• “How can I break my 

program?”

DEBUGGING
• Study events leading up 

to an error
• “Why is it not working?”
• “How can I fix my 

program?”

6.0001 LECTURE 7 3



SET YOURSELF UP FOR EASY 
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program up into modules that can be tested 
and debugged individually

 document constraints on modules
• what do you expect the input to be?

• what do you expect the output to be?

 document assumptions behind code design

6.0001 LECTURE 7 4



WHEN ARE YOU READY TO 
TEST?
 ensure code runs
• remove syntax errors

• remove static semantic errors

• Python interpreter can usually find these for you

 have a set of expected results
• an input set

• for each input, the expected output

6.0001 LECTURE 7 5



CLASSES OF TESTS
 Unit testing
• validate each piece of program

• testing each function separately

 Regression testing
• add test for bugs as you find them

• catch reintroduced errors that were previously fixed

 Integration testing
• does overall program work?

• tend to rush to do this

6.0001 LECTURE 7 6



TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints

Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

6.0001 LECTURE 7 7



def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code

 can be done by someone other than the implementer to 
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification 
• build test cases in different natural space partitions

• also consider boundary conditions (empty lists, singleton 
list, large numbers, small numbers)

BLACK BOX TESTING

6.0001 LECTURE 7 8



def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

6.0001 LECTURE 7 9

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0     1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0     2.0**64.0



GLASS BOX TESTING
 use code directly to guide design of test cases 

 called path-complete if every potential path through 
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times

• missing paths

 guidelines 
• branches

• for loops

• while loops

6.0001 LECTURE 7 10



GLASS BOX TESTING
def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

6.0001 LECTURE 7 11



DEBUGGING
 steep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda

• Python Tutor

• print statement

• use your brain, be systematic in your hunt

6.0001 LECTURE 7 12



PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function

• parameters

• function results

 use bisection method
• put print halfway in code

• decide where bug may be depending on values

6.0001 LECTURE 7 13



DEBUGGING STEPS
 study program code
• don’t ask what is wrong

• ask how did I get the unexpected result 

• is it part of a family?

 scientific method
• study available data

• form hypothesis

• repeatable experiments

• pick simplest input to test with

6.0001 LECTURE 7 14



ERROR MESSAGES – EASY
 trying to access beyond the limits of a list
test = [1,2,3] then      test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable 
a  NameError

 mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc. 
a = len([1,2,3]

print(a)  SyntaxError

6.0001 LECTURE 7 15



LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to 
• someone else

• a rubber ducky

6.0001 LECTURE 7 16



DON’T DO
• Write entire program
• Test entire program
• Debug entire program

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change 

you made
• Panic

• Backup code
• Change code
• Write down potential bug in a 

comment
• Test code
• Compare new version with old 

version

6.0001 LECTURE 7 17



EXCEPTIONS AND ASSERTIONS
 what happens when procedure execution hits an 
unexpected condition?

 get an exception… to what was expected
• trying to access beyond list limits 

test = [1,7,4]

test[4]  IndexError

• trying to convert an inappropriate type 
int(test)  TypeError

• referencing a non-existing variable 
a  NameError

• mixing data types without coercion 
'a'/4  TypeError

6.0001 LECTURE 7 18



OTHER TYPES OF EXCEPTIONS
 already seen common error types:
• SyntaxError: Python can’t parse program

• NameError: local or global name not found

• AttributeError: attribute reference fails

• TypeError: operand doesn’t have correct type

• ValueError: operand type okay, but value is illegal

• IOError: IO system reports malfunction (e.g. file not 
found)

6.0001 LECTURE 7 19



DEALING WITH EXCEPTIONS
 Python code can provide handlers for exceptions

try:

a = int(input("Tell me one number:"))

b = int(input("Tell me another number:"))

print(a/b)

except:

print("Bug in user input.")

 exceptions raised by any statement in body of try are 
handled by the except statement and execution continues 
with the body of the except statement

6.0001 LECTURE 7 20



HANDLING SPECIFIC 
EXCEPTIONS
 have separate except clauses to deal with a particular 
type of exception
try:

a = int(input("Tell me one number: "))

b = int(input("Tell me another number: "))

print("a/b = ", a/b)

print("a+b = ", a+b)

except ValueError:

print("Could not convert to a number.")

except ZeroDivisionError:

print("Can't divide by zero")

except:

print("Something went very wrong.")

6.0001 LECTURE 7 21



OTHER EXCEPTIONS
 else:

• body of this is executed when execution of associated 
try body completes with no exceptions

 finally:
• body of this is always executed after try,  else and 
except clauses, even if they raised another error or 
executed a break, continue or return

• useful for clean-up code that should be run no matter 
what else happened (e.g. close a file)

6.0001 LECTURE 7 22



WHAT TO DO WITH 
EXCEPTIONS?
 what to do when encounter an error?

 fail silently: 
• substitute default values or just continue

• bad idea! user gets no warning

 return an “error” value
• what value to choose?

• complicates code having to check for a special value

 stop execution, signal error condition
• in Python: raise an exception
raise Exception("descriptive string")

6.0001 LECTURE 7 23



EXCEPTIONS AS CONTROL 
FLOW
 don’t return special values when an error occurred 
and then check whether ‘error value’ was returned

 instead, raise an exception when unable to produce a 
result consistent with function’s specification

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

6.0001 LECTURE 7 24



EXAMPLE: RAISING AN 
EXCEPTION

def get_ratios(L1, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers

Returns: a list containing L1[i]/L2[i] """

ratios = []

for index in range(len(L1)):

try:

ratios.append(L1[index]/L2[index])

except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

except:

raise ValueError('get_ratios called with bad arg')

return ratios

6.0001 LECTURE 7 25



EXAMPLE OF EXCEPTIONS
 assume we are given a class list for a subject: each 
entry is a list of two parts
• a list of first and last name for a student

• a list of grades on assignments

 create a new class list, with name, grades, and an 
average

6.0001 LECTURE 7 26

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]], 

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333], 

[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]



EXAMPLE 
CODE

def get_stats(class_list):

new_stats = []

for elt in class_list:

new_stats.append([elt[0], elt[1], avg(elt[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

6.0001 LECTURE 7 27

[[['peter', 'parker'], [80.0, 70.0, 85.0]], 

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]



ERROR IF NO GRADE FOR A 
STUDENT
 if one or more students don’t have any grades, 
get an error

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]], 

[['bruce', 'wayne'], [10.0, 8.0, 74.0]],

[['captain', 'america'], [8.0,10.0,96.0]],

[['deadpool'], []]]

 get ZeroDivisionError: float division by zero
because try to 
return sum(grades)/len(grades)

6.0001 LECTURE 7 28



OPTION 1: FLAG THE ERROR 
BY PRINTING A MESSAGE
 decide to notify that something went wrong with a msg
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666], 

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334], 

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], None]]

6.0001 LECTURE 7 29



OPTION 2: CHANGE THE POLICY
 decide that a student with no grades gets a zero
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

return 0.0

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666], 

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334], 

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], 0.0]]

6.0001 LECTURE 7 30



ASSERTIONS
 want to be sure that assumptions on state of 
computation are as expected

 use an assert statement to raise an 
AssertionError exception if assumptions not met

 an example of good defensive programming

316.0001 LECTURE 7



EXAMPLE

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 raises an AssertionError if it is given an empty list for 
grades

 otherwise runs ok

326.0001 LECTURE 7



ASSERTIONS AS DEFENSIVE 
PROGRAMMING
 assertions don’t allow a programmer to control 
response to unexpected conditions

 ensure that execution halts whenever an expected 
condition is not met

 typically used to check inputs to functions, but can be 
used anywhere

 can be used to check outputs of a function to avoid 
propagating bad values

 can make it easier to locate a source of a bug

336.0001 LECTURE 7



WHERE TO USE ASSERTIONS?
 goal is to spot bugs as soon as introduced and make 
clear where they happened

 use as a supplement to testing

 raise exceptions if users supplies bad data input

 use assertions to
• check types of arguments or values

• check that invariants on data structures are met

• check constraints on return values

• check for violations of constraints on procedure (e.g. no 
duplicates in a list)

346.0001 LECTURE 7



MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall  2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms



