MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 2005

Quiz I

Closed Book — one sheet of notes

Throughout this quiz, we have set aside space in which you should write your answers. Please try
to put all of your answers in the designated spaces, as we will look only in this spaces when grading.

Note that any procedures or code fragments that you write will be judged not only on correct
function, but also on clarity and good programming practice.

NAME:
Section Number: Tutor’s Name:
PART | Value | Grade | Grader
1 20
2 17
3 20
4 12
5 15
6 16
Total 100

6.001, Spring Semester, 2005—Quiz I 2

Part 1: (20 points)

For each of the following expressions or sequences of expressions, state the value returned as the
result of evaluating the final expression in each set, or indicate that the evaluation results in an
error. If the result is an error, state in general terms what kind of error (e.g. you might write
“error: wrong type of argument to procedure”). If the evaluation returns a built-in procedure,
write primitive procedure. If the evaluation returns a user-created procedure, write compound
procedure.

If the expression does not result in an error, also state the “type” of the returned expression, using
the notation introduced in lecture.

You may assume that evaluation of each sequence takes place in a newly initialized Scheme system.

Question 1.

Value: Type:

Question 2.

(define * /)
(define + -)
(x 12 (+ 6 2))

Value: Type:

Question 3.

((lambda (a + b) (+ b a))
2 - 4)

Value: Type:

6.001, Spring Semester, 2005—Quiz I

Question 4.

((lambda (a)
(lambda (b)
(+ (sqrt a) (sqrt b))))
5)

Value:

Question 5.

(define arg 5)
(define local-arg 3)
(define (proc arg)
(let ((local-arg 2))
(list arg local-arg)))
(proc 1)

Value:

Type:

Type:

6.001, Spring Semester, 2005—Quiz I 4

Consider the following simple database of personnel information. The entire database is represented
as a list of entries. Each entry is made using the following constructor:

(define (make-entry person salary position)
(1list person salary position))

The person part of an entry is created using the constructor:

(define make-person list)

Note that values for names and positions are represented using strings, while salaries are represented
using numbers. Here is an example database:

(define sampledata
(1ist (make-entry (make-person "smith" "john" "henry") 30000 "president")
(make-entry (make-person "jones" "anne" "marie" "heather") 60000 "hacker")
(make-entry (make-person "smith" "fred") 55000 "hacker")
(make-entry (make-person "doe" "jane" "elizabeth") 38000 "assistant")
y p J

(make-entry (make-person "roe" "marie" "jane") 29000 "vice-president")))

Note that the ”family” name is always the first element of the person abstraction, but there can
be arbitrarily many ”given” names.

Part 2: (17 points)

Question 6: Draw a box-and-pointer diagram for the structure corresponding to test, where

(define test (make-entry (make-person "smith" "john" "henry") 30000 "president"))

6.001, Spring Semester, 2005—Quiz I 5

Question 7: Complete the entry abstraction by providing selectors for person, for salary and
for position. For example:

(person test)
;Value: ("smith" "john" "henry")

Question 8: Complete the person abstraction by providing selectors for family-name and given-names,

e.g.

(given-names (make-person "jones" "anne" "marie" "heather"))
;Value: ("anne" "marie" "heather")

(family-name (make-person "jones" "anne" "marie" "heather"))
;Value: "jones"

Thus the family name is always the first name in the entry, the given names are any names after
this.

6.001, Spring Semester, 2005—Quiz I 6

Part 3: (20 points)

Now suppose that we want to retrieve entries from the database that satisfy certain constraints.
For example, we might want to get all the entries of people with the position of ”hacker”, or we
might want to get the entries of people whose first name is ”Jane”, or all the entries of people with
salaries between 25000 and 50000. Remember our procedure:

(define (filter pred 1lst)
(cond ((null? 1st) nil)
((pred (car 1lst)) (comns (car 1st) (filter pred (cdr 1lst))))
(else (filter pred (cdr 1st)))))

Question 9: We want a way of getting entries from the database with a particular first name
(where by first name, we mean the first of the ”"given” names, not the family name). You may
assume that every entry in the database has at least one given name. You may also find the
procedure string=7, which compares two strings, to be useful.

Complete the following code so that, for example,

(filter (called-by "jane'") sampledata)
;Value: ((("doe" "jane" "elizabeth") 38000 "assistant"))

(define (called-by name)

Question 10: Suppose we want to find all the people who have salaries at least as large as a
specified amount, and who hold a particular position.

(filter (salary-and-position 60000 "hacker") sampledata)
;Value: ((("jones" "anne" "marie" "heather") 60000 "hacker"))

Complete the following code fragment:

(define (salary-and-position minimum posn)

6.001, Spring Semester, 2005—Quiz I 7

Question 11: Assume that the procedure one-of has the following behavior. It takes two argu-
ments, an element and a list. It successively tests for equality of the element to entries in the list,
using string=7, until it either reaches the end of the list (in which case it returns false) or until
it finds an element of the list that matches (in which case it returns true). Using this, supply an
expression for INSERT1 in the expression below.

(define (has—-name name)
INSERT1)

(filter (has-name "marie") sampledata)
;Value: ((("jones" "anne" "marie" "heather") 60000 "hacker")
(("roe" "marie" "jane") 29000 "vice-president"))

Question 12: Recall the procedure:

(define (map proc lst)
(if (null? 1st)
nil
(cons (proc (car 1lst)) (map proc (cdr 1st)))))

Provide an expression for INSERT2 so that evaluating (map INSERT2 sampledata) would return a
list of the number of names (both family and given names) for each entry, e.g.

(map INSERT2 sampledata)
;Value: (3 4 2 3 3)

You may assume that length is a procedure that returns the number of elements (or length) of a
list.

6.001, Spring Semester, 2005—Quiz I 8

Part 4 (12 points) Given our little data base of personnel files, we might want to be able to sort
the entries, for example by increasing salary. Here is a procedure for sorting:

(define (find-best best rest compare extractor)
(if (null? rest)
best
(if (compare (extractor (car rest))
(extractor best))
(find-best (car rest) (cdr rest) compare extractor)
(find-best best (cdr rest) compare extractor))))

(define (remove elt rest same)
(if (null? rest)
nil
(if (same elt (car rest))
(cdr rest)
(cons (car rest) (remove elt (cdr rest) same)))))

(define (sort data compare extractor same)
(let ((trial (find-best (car data) (cdr data) compare extractor)))
(let ((rest (remove trial data same)))
(if (null? rest)
(list trial)
(cons trial (sort rest compare extractor same))))))

For example, to sort our data by increasing salary, we would evaluate:
(sort sampledata < salary =)

We are going to measure the order of growth in time (as measured by the number of primitive
operations in the computation) and in space (as measured by the maximum number of deferred
operations — do not count in space the intermediate data structures constructed by the algorithm),
measured as a function of the size of data, denoted by n. Assume that the procedures used for
compare, extractor and same use constant time and space.

For each of the following questions, choose the description from these options that best describes
the order of growth of the process. If you select “something else”, please state why.

constant

linear
exponential
quadratic
logarithmic
something else

FTEHTQW =

6.001, Spring Semester, 2005—Quiz I 9

Question 13: What is the order of growth in time of the procedure find-best?

Question 14: What is the order of growth in space of the procedure find-best?

Question 15: What is the order of growth in time of the procedure remove?

Question 16: What is the order of growth in space of the procedure remove?

Question 17: What is the order of growth in time of the procedure sort? Remember to include
the effect of find-best and remove.

Question 18: What is the order of growth in space of the procedure sort? Remember to include
the effect of find-best and remove.

6.001, Spring Semester, 2005—Quiz I

Part 5 (15 points)

Here is a procedure for composing two procedures:

(define (compose f g)
(lambda (x) (f (g x))))

and here is a procedure for applying a given procedure some number of times

(define (repeated f n)
(if (=n 1)
f
CODE-ADDITION-HERE))

You will consider some possible pieces of code to complete repeated. The expected behavior is:

(define (square x) (* x x))
;Value: "square --> #[compound-procedure 7 square]"

(repeated square 4)
;Value: #[compound-procedure 8]

((repeated square 3) 2)
;Value: 256

((repeated square 4) 2)
;Value: 65536

((repeated square 2) 3)
;Value: 81

10

6.001, Spring Semester, 2005—Quiz I 11

For each of the following pieces of code, indicate whether it correctly completes the implementation.
If it does not, indicate whether it results in an error, or what value it returns for the last example
above:

Question 19 (lambda (x) ((compose f (repeated f (- n 1))) x))

Question 20 (lambda (x) ((compose (repeated f (- n 1)) f) x))

Question 21 (lambda (x) (compose f (repeated f (- n 1))))

Question 22 ((lambda (x) (compose f (repeated f (- n 1)))) x)

Question 23 (compose f (repeated f (- n 1)))

6.001, Spring Semester, 2005—Quiz I 12

Part 6 (16 points)

We want to add a simple type check to our language, specifically the ability to state requirements
on arguments to procedures, so that if an argument supplied to a procedure does not meet the
specified conditions, we will exit with an error. For example, here is a procedure that computes
the greatest common divisor of two numbers:

(define (gcd x y)
(assert x number?)
(assert y (list number? (lambda (a) (>= a 0))))
(if (=y 0)
b4
(gcd y (remainder x y))))

The idea behind assert is that it will apply one or more tests to the specified argument. If all
the tests are true, it will simply return some value (e.g. the value #T) and continue. If not, it will
exit with some error message. Thus, in the example above, the first assert expression would check
that the parameter x has a value that is a number, while the second expression would check that
the parameter y has a value that is both a number and is no less than 0.

Question 24:

Complete the following definition. procedure? will return true if the argument is a procedure.
Remember that error is a Scheme procedure that will cease evaluation and return the user to top
level with an error message. If you use error don’t worry about details of the message returned,
just use something you think is reasonable.

(define (assert test-val procs)
(cond ((procedure? procs)
INSERT3)
((null? procs)
#T)
(else INSERT4)))

What code should be used for INSERT3?

What code should be used for INSERT4?

