
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 14.1

Slide 14.1.1
Last time we introduced the idea of object oriented systems.
Today, we want to build on those basics, looking at how we can
expand object-oriented systems to deal with hierarchies of
objects, to leverage the commonality of methods between
different kinds of objects. We are going to see how the same
ideas of abstraction allow us to control complexity in object-
oriented systems, much as they did in procedural systems. We
are also going to show a version of a Scheme based object-
oriented system. Note that this is not an optimal implementation
of an object-oriented system compared to say Java or C++, but
the goal is to show how one could create and manipulate an
object-oriented system using the tools we have already developed. Our intent is to separate these issues;
highlighting the concepts of object-oriented systems, while grounding those concepts in a specific instantiation in
Scheme.

Slide 14.1.2
To start, let me remind you of what we have already seen. We
are trying to organize a large system around a collection of
objects. An object can be thought of as a “smart” data structure;
a set of state variables that describe the object; and an associated
set of methods for manipulating those state variables. We expect
our systems to have many different versions of the same kind of
object. For instance, think of bank system in which we might
have many different accounts. Each account would have a set of
data values: current balance, overdraft protection, pending
deposits. Thus there is the notion of an account as an abstract
structure, and there is notion of different, specific versions of this

abstract structure. Thus, we make a distinction. A class will define the common behavior of a kind of object in our
system, the collection of things that are going to behave in the manner defined by those commonalities. Instances
capture the specific details of an individual version of that class.
Our goal is to see how to structure computation within this new paradigm, in which the central units are “smart”
data structures. Thus, when we design a system we will tend to focus on the classes, as those are the basic building
blocks of our system. The “programming” of these systems will tend to focus on the interactions and behaviors of
the classes: how should changes in one instance of an object affect other aspects of that object or other objects in the
system?
When we want to actually run our system, say to simulate a behavior, we will use the classes to create the instances
that are particular versions of things, and then see how those specific instances interact.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.1.3
Recall from last time the example we used to demonstrate object-
oriented systems. That example was a system for simulating a
simple "star wars" scenario. In that system, we had class
diagrams such as those shown here. We had a class for ships, a
class for planets, a class for torpedoes, and some other classes
that we have not shown here. Recall that for each class, we had
two sets of things: internal state variables, which characterized
the state of each instance of the class, and a set of methods, the
things that the class was capable of doing. Those methods often
were characterized by the instance accepting a message of the
same name, then performing some interaction between different
objects within the system or changing the status of the internal
state variables of an instance.

Slide 14.1.4
In order to make a point, I have changed slightly my definition
of a torpedo. Last time a torpedo just used a position and a
velocity, and it moved until it hit some thing, at which point it
exploded. A smarter torpedo might explicitly seek some target,
and use a state variable like a proximity fuse, so that when the
torpedo got close enough to its target it would explode.
One reason for introducing this is to notice that state variables
within our instances could actually point to other instances. So
the state variable for a target would point to another class, a ship
in this case.

Slide 14.1.5
However, the real point we want to draw attention to in this
diagram is the commonality, particularly the commonality
between ships and torpedoes. Note that both of these objects can
fly, they both therefore have state information about position and
velocity, they both have methods that deal with position and
velocity; thus they have a lot of things in common, as well as
having a few distinctive properties.
We know that a common theme in this course is capturing
common patterns and abstracting them. So the issue here is
whether we can do the same thing in an object-oriented system.
Can we take advantage of the fact that torpedoes and ships share
a lot in common, and use that to build more modular systems?

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.1.6
Conceptually we should be able to do this. Without worrying
about implementation details, let's first pull out that common
pattern in our class diagram. Here is an abstraction of that
common pattern, a new class called a mobile-thing. It has two
state variables, position and velocity, and it has some common
methods for dealing with those variables. These variables and
methods will hold for any mobile object. We will, of course,
include a type tag for this new kind of class, as well. And this
thus defines a new class.

Slide 14.1.7
Given that new class, we can now create specializations. We can
create a subclass. A torpedo is a particular kind of mobile thing.
It has all the properties of mobile things, but it also has
characteristics that are particular to torpedoes. Similarly, a ship
is a kind of mobile thing; it's a specialization that has, in addition
to the properties of mobile things, other characteristics that
matter only to ships.

Slide 14.1.8
As we start designing our system, we can begin to put together
hierarchies of class diagrams. We have base classes like mobile
things. We also have some specializations or subclasses so that
for example a ship is a mobile thing and should therefore inherit
the state and behavior of a mobile thing, as well as having its
own properties. In the other direction, we say that the mobile
thing class is a super-class of the ship and torpedo classes.
Now we can start building a broader set of designs, in which we
have hierarchies of information captured in different
specializations of different classes of objects.

Slide 14.1.9
And as we fill out our class diagram, we will have different
relationships between the classes. Torpedoes, for example, can
have a class as a link: targets are always going to be elements of
the ship class.
Note that one of the advantages of creating super-classes is that
we can nicely isolate the code for the methods of the super
classes so that if we want to change one of those methods, we
only need to worry about the implementation of the super-class,
not about all of the specializations. If for example we decide to
change how things move, we don't have to search for all the
move methods in the different subclasses, we need only change
the method in the super-class. This gives us a nice

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

modularization of the system, by isolating the common methods in a single place, for easy maintenance and change.

6.001 Notes: Section 14.2

Slide 14.2.1
So our first goal is to examine the paradigm of constructing
systems around objects, and for now we are going to ignore the
issue of how to describe these object systems in Scheme; we will
instead initially focus on the abstract use of object-based
systems. Thus, we will primarily consider the classes of objects
we might want in a system, and the range of interactions that we
will need to support between objects. For now, we will simply
assume that given an instance of a class, that is an object, we can
send that object a message using the form (ask <object>
<method> <arguments>). In other words, we can use
some Scheme interface (which we will define later) based on the
ask procedure, which takes as arguments an object, a name of a method (something we want the object to do), and
some set of arguments that specify details of the method, and ask will cause the object to execute the specified
method. We will return to details of this shortly.

Slide 14.2.2
We start with a class for people, which we call the person class.
Each instance of a person has two class variables, holding the
person’s first and last name. Each instance also has two
methods. The say method causes the person to say something.
The whoareyou? method causes the person to indicate their first
name.
The class diagram for this class is shown in the slide. As well,
we will assume some constructor for making instances of the
class (we will get to details of this shortly), and we can see how
asking an instance of this class to say something or to identify
themselves causes actions in the system.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.2.3
Now we add a sub-class of person, called a professor.
Note that this class does not have any specific internal class
variables. However, because it is a subclass of a person, it
should inherit the class variables of its superclass. In other
words, professors also have a first and last name, because their
person superclass instance has such variables. And professors
have the ability to say things by virtue of being a subclass of
person.
Note that we again assume there is some constructor for making
instances of a class (which should, as we will see, take care of
creating superclass instances as part of the process). Because of
this hierarchy of classes, we should be able to ask the professor
to say something, and it will use its inherited method from the person instance to do this.

Slide 14.2.4
In our little world, professors have no class variables of their
own (ah, the irony!) but they do have two methods, a
whoareyou? method and a lecture method. Notice that a
professor has its own whoareyou? method, distinct from the
identically named method in person. If we ask a professor
whoareyou? it will run its own method to answer the question,
with a different behavior. When a subclass has a method of the
same name as a superclass, the subclass method is said to
shadow the inherited method in the superclass instance.

Slide 14.2.5
Now in the world we are creating, it is traditional that when a
professor lectures he starts every sentence with “Therefore”.
An interesting question to consider when actually implementing
the professor class is whether this lecture method is a distinct
method, or whether it shares structure with the underlying say
method of the inherited person class. Conceptually, we would
like to think that lecturing is a particular variant on saying:
indeed one simply says the word “Therefore” and then says the
remaining text. This idea of using a superclass’ method to
accomplish part of a method is called “delegation”.
Note that this is an important requirement to place on an object
system. The idea is that at a conceptual level, just as classes can
be related to one another (e.g. via the subclass hierarchy), so too can methods be related to one another, by this
delegation idea. And at the implementation level, delegation can be seen as a mechanism that allows subclasses to
specialize (and use) methods found in superclasses.
This has two important consequences. The first is that if we design our object system correctly, we will have a clean
modularity of code, so that there is only one place to implement saying some thing, and thus only one place to worry
about if we decide to change the manner in which this method executes. Secondly, we have an explicit indication
(through the act of delegation) that the lecture method and the say method are related conceptually. We will return
to this point when we consider an explicit implementation of an object-oriented system in Scheme.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.2.6
Now, let’s add another new class as a subclass of professor, this
one called an arrogant-prof. An arrogant-prof is distinguished
by the fact that he ends everything he says with “obviously”.
The obvious (sorry!) way to do this is to have the arrogant-
prof’s method of saying simply be a delegation of saying to its
superclass (professor), with obviously tacked onto the end.
Note that we delegate one step up the superclass chain because
that is the only way arrogant-prof can eventually “get to” the
person. The arrogant-prof has a pointer to its immediate
superclass, but not to superclasses higher in the chain. By
delegating one step up the chain, the ordinary inheritance
mechanism will take over when the system determines that the

professor doesn’t have a say method of its own.

Slide 14.2.7
Now an interesting issue arises if we ask an arrogant-prof to
lecture. What should he say? One view is that, because
arrogant-prof has no lecture method, lecture’ing will be
handled by the method in the professor class, which in turn will
delegate to person after tacking on a “therefore”. The result will
be as shown.

Slide 14.2.8
But another view says that arrogant-prof inherits the lecture
method from professor, so conceptually the lecture method is
sitting there in the arrogant-prof class. As a result, the lecture
method should give arrogant-prof a chance to see whether it
knows how to say something, rather than instantly delegating to
a say method found up the superclass chain. And of course,
arrogant-prof does know how to say something; it has a say
method, one that should shadow the say method of a person.
As a result, asking an arrogant-prof to lecture, under this view,
should result in the following sequence of events:
• can’t find a lecture method in arrogant-prof class; use the

method from the superclass, professor
• the lecture method from professor asks the current instance (an arrogant-prof) to say the original
stuff, with “therefore” prepended to the front. Note what has changed and what hasn’t under this view:
Lectureing is still saying something with “therefore” on the front, but now we are asking the current
instance, an arrogant-prof, to do the saying, instead of handing it up the superclass chain.
• the arrogant-prof has a say method, which works by adding “obviously” to the end of the statement,
and finally, delegating the resulting statement up the inheritance chain to the next say method that can be
found (which turns out to be in the person class).

The result is as shown.

A key issue, we will then see, is to decide as we build our object oriented system, how we want methods to inherit

from other methods. Ideally we will want the ability to choose as a programmer, when we decide on our classes of

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

objects, whether we want to delegate behaviors to specific superclasses, or to simply inherit behaviors by following
up the chain of classes.

Slide 14.2.9
Now let’s add one final type of object to our system, a student.
Students are always very polite, so they have their own say
method, which prepends the words “Excuse me, but” to the front
of everything they say.

Slide 14.2.10
Now suppose we go back to our class diagram, and decide to
modify our classes. For example, we want students to have the
ability to ask a question of a professor. And of course, we need
to add the ability for a professor to answer, which we choose to
do within the arrogant-prof class. But we also decide that
occasionally even a professor might have the need to ask a
question.
In terms of our object system, this simply would require
redefining whatever mechanism we use to create classes and
instances, so that a new method is included in that class
definition.

Slide 14.2.11
Note that in this case, we want our objects to take several
arguments, in particular, both the question and the object to
which the question is being directed. Also note the use of ap-1
as an argument, meaning we want the actual instance, not just
the name of that instance.
We still have to define how we want the arrogant-prof to
respond. We choose to incorporate the following behavior. If the
question is being asked by a student, then the arrogant-prof will
respond by saying “this should be obvious to you”.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.2.12
On the other hand, if the question is asked by another professor,
then the arrogant-prof will respond by saying “why are you
asking me about … I thought you published a paper on that
topic”

Slide 14.2.13
The reason for introducing this behavior is to provide an
example of a class method, in which the action of the method
depends on the object that initiated it. In particular, to
incorporate this behavior, the arrogant-prof’s answer method
will need to do something different depending on what kind of
object ask the question in the first place: if it was a student then
we want to respond one way, whereas if it was a professor, we
want to respond a different way.
How do we do this? In essence, we need a way of “tagging” our
objects, to identify their type. Within an object-oriented system,
we choose to do this by adding to our classes a “predicate”
method, which responds to the question of whether the instance
is of that specified type. Thus, we can ask an object if they are a student, or a professor.
(Actually, if you think about this, you will realize that we need to be careful in how we do this, since asking a
professor if he is a student could lead to an error if the fact that the professor object does not have a student?
method is not handled properly. We will see a particular way of dealing with this issue later.)

Slide 14.2.14
So what are the lessons we can take away from this simple
design exercise? Well, we can see that as we design a system for
supporting the creation of object-oriented systems, we need
methods for dealing with:
• tagging of instances
• specifying class hierarchies and ensuring that instances
create superclass instances
• inheriting of methods from class hierarchies
• delegation of methods to other instances within a class
hierarchy

We will return to these issues in detail in later parts of the
lectures.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 14.3

Slide 14.3.1
Now, let’s revisit these ideas by looking at how one might build
an actual object-oriented system in Scheme. We are going to
intertwine the idea of building class systems in Scheme, with the
idea of using classes as a design methodology. Although not
optimal, we will use a language we understand (Scheme) as a
basis for examining how to create procedures that support class
based systems, while trying to abstract the general methods from
the specifics of this implementation in Scheme.

Slide 14.3.2
Here is our blueprint for making this happen. First of all, objects
in our system, i.e. the particular instances, we will represent as
procedures that accept messages as input. We will use the same
idea we saw earlier, message-passing procedures that accept
messages and cause changes to state variables as a function of
those messages. One of the advantages of this choice is that each
instance will be uniquely identified. We can use eq? to tell

them apart, because each object instance will be a unique
Scheme procedure with a local frame that captures its
information as local state.
Each object or instance can be formed differently because it has

a procedure that points to a local environment that captures the state information, just as we saw in the previous
examples of the earlier lectures.
Thus we will represent instances as local procedures with local state captured in local environments.

Slide 14.3.3
Instances, of course, are simply particular versions of a class. So
we will also need in our system a way of defining classes, and
we will use a particular convention. We will define a Scheme
procedure called make-something (e.g. make-person,
make-professor). Inside of that procedure, that

definition of a class, we need two things: we will need a set of
methods that will be returned in response to messages, so the
class procedures will need to contain within themselves ways of
taking in a message and returning a local method. The second
thing we need is an inheritance chain, a way of telling the class
what methods to use, and by this we mean not just the local
method, but rather if the class is a subclass of some superclass, we need a convention for deciding how to inherit
methods from that superclass. In the case of a professor, for example, we might have methods to deal with
LECTURE or WHOAREYOU?, but we also want to inherit the method of SAY from the superclass of PERSON.
So we will need to set up conventions for inheriting methods from superclasses.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.4
So here is the blueprint we are going to use throughout the rest
of this lecture. We will start by building basic objects,
determining the methods we need and the conventions for
dealing with such methods. We will see why we need a
particular way of getting a handle on the object itself as an
argument to methods, as we will see in a set of examples.
We will then turn to the notion of inheritance, how to build an
internal superclass, and then deal with getting methods from that
object itself or from internal instances of superclasses. We will
see that there are variations on inheritance that become important
when designing object-oriented systems.
Finally, we will turn to the notion of multiple inheritance, having

objects that can inherit methods from different kinds of superclasses.
So we are going to use this blueprint both to build an object oriented system in Scheme, and to see how such ideas
can be used in general to design systems around the concepts of objects as a tool for controlling complexity in large
systems.

Slide 14.3.5
We are going to develop these ideas using the particular example
we developed previously, with a world of people, professors,
arrogant-profs and students. As we progress, we will see how
these classes relate to one another in terms of superclasses and
inheritance of methods.
To start, we design a first class. This means creating a class
diagram, and we will start with the simplest thing: a person.
Here is the definition for the person class. It has two internal

variables: an fname and an lname. It also has some

methods that it can handle: returning its name, and saying things
(since that is what a person "does").

Slide 14.3.6
Now we are ready to implement our first class. Remember we
said our class will be characterized as a procedure which, when
invoked, will construct instances of the class. Here is our make-
person procedure, which defines our person class.

To set this up, we have to make some design choices. Remember
that instances of a class do different kinds of things. It may
simply want to return some information, e.g. its name. It may
want to change internal information, e.g. change the name. Thus
we need methods that return information and methods that
change information, and here is our design choice. We are going
to require the response of an instance to every message to be a

method. This is simply a choice on our part, though we believe it will be a convenient one as we add capabilities to
our system. Note that it says we can't just return a value; we return procedures, the application of which may then
return a value.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.7
So let’s look at this definition to see how this is implemented.
Our class definition, make-person, takes as input an

fname and an lname. It returns a message-accepting procedure,
which will constitute one of our instances. Inside of that
lambda we have several things.

We have a set of dispatches, based on the message. Thus, if the
message is WHOAREYOU?, we will return a procedure of no

arguments, which when evaluated will return the value of the
name. We have a way of changing the name: again it is a
procedure, now of a single argument, which will change the
binding for fname within the local environment to the new

value, using the same methods we saw before. And we will have a way of "saying" something, and in this case,
when asked to SAY something, we will return a procedure that takes as input a list of things, and displays that as

output on the monitor.
Note as our default clause, if the message is not recognized, we will deal with that by a special procedure designed
to handle the case of a missing method (which we will return to later).

Slide 14.3.8
Notice again the general form of our system. For any message
passed in as input, our class instance will return a procedure, a
method for handling information. Thus we are guaranteed that
the returned value is always a procedure. To see that, notice that
the response to every message is a lambda expression.

Slide 14.3.9
We can see that the kinds of objects we will be building are
going to essentially be "dispatch on message" procedures. To
take advantage of this, we have a cleaner way of coding such
procedures. This uses an alternative syntax called case. For

our purposes, a case expression takes a single expression,

called the message and a series of clauses. Evaluation of a

case expression is to match the value of message
sequentially against the first expression of each of the clauses. If
a match is found, then the value of the rest of that clause is
returned as the value of the entire case expression, in this case

giving us a procedure as our method. If we do not find a match, then as in a cond expression, the else clause

will always match, and we return the value of its subsequent expression.
This simply gives us a cleaner template by abstracting away the dispatch on type components of the code.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.10
Returning to our person class definition, we can make our

implementation more transparent, with exactly the same
behavior as the earlier version.

Slide 14.3.11
Notice what is returned in each case. If a person (an instance
created by this procedure) is given the message
WHOAREYOU?, it will evaluate the subsequent clause of the

first case, and return a procedure of no parameters, and a body
that is just the expression fname. But remember where the

environment pointer of this procedure will point: an environment
that captures the information about the binding of fname, so

that we will be able to return that value.

Slide 14.3.12
A similar situation holds for the message CHANGE-NAME,

returning a different procedure, which in this case when
evaluated will change the binding for fname.

Slide 14.3.13
Notice what we have done. We have created a first definition of
a class. By defining make-person we have laid out a first

pass at the internal variables and methods that each instance of a
person will need.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.14
Now what about our distinction between classes and instances?
A class defines a general set of objects. To actually use it, we
need to make specific versions of members of that class, we need
to create instances. To do that, we simply invoke our make
procedure with appropriate arguments. Here is an example of a
person, called George, though notice that the name of the object
in the environment is just g. Thus g points to the actual person

object, that has within it information about what its name is.

Slide 14.3.15
Great, we now have an instance in our system. How do we get
this instance to tell us its name?

Slide 14.3.16
Recall that in our particular version of the system, objects are
represented as procedures so we need to pass that object a
message, e.g. we need to give it the message NAME. Remember

from the previous slide what this will do. g can be applied to the
argument WHOAREYOU? and that will return another

procedure, of no arguments, whose body is just the expression
fname. This is the method that is returned to us.

But remember that in our choice of implementation this method
is a procedure, so we need to apply it to get it to execute its
actions. In this case, we apply it to no arguments, which will
cause the procedure to lookup the value of the symbol fname

in the local environment and return it. Convince yourself that this is correct by tracing through the environment
model.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.17
But this is pretty ugly, right? In order to get an object to do
something, we have to do this strange invocation, ((g
‘WHOAREYOU?)) with two parentheses on either end.

Why?
Because we have really intertwined two things together in our
current approach. We have the process of getting the method
from the object, by sending the object a message. That is the part
in purple. That is the part that creates the procedure representing
our actual method. Then we have a part that uses that method to
make the action take place, where we take that method and apply
it (since it is a procedure) to get the effect or result we want.
So we have really coupled two things together here and this
leads to a messy interface as a consequence, since the user has to remember how to call things in this particular way.
It would be much better if we could separate out these two actions.

Slide 14.3.18
In fact, good design suggests that we should separate out these
two pieces. We don't want to couple together two things like this,
when we may want to separately extract methods and use
methods.
First we will create a procedure for getting a method. Note that
is just sends a message, and by convention we get back some
internal procedure that will point to frames that are scoped by the
actual object's frame, and thus will have access to internal
variables. This builds a clean interface to our convention, by
allowing us to send any message to any instance, and get back
the associated method for meeting that message.

Slide 14.3.19
Separating out the idea of getting a method for an object allows
us to use the returned method in a variety of ways. In some
cases, we will want to pass it directly on to other objects, in other
cases we will want to use it immediately. And this leads to the
second part.
We also want to ask an object to do something. In this case we
will combine our method retrieval part with the actual invocation
of that method (the application of that method to a set of
arguments). So here is a generic interface to do that. Note the
form of this procedure, ask. It takes an object and a message

and gets the method associated with that message. Actually, we
try to get that method, but we carefully check to ensure there is an actual method available. If there is a method for
this message, we then apply it to the arguments.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.20
Now what does that mean? Remember that our methods could
take different numbers of arguments, but we want one standard,
clean interface. So in the definition of ask we use the "dot"

notation to bind the variable args to a list of the values of any

remaining arguments (other than the ones for object and

message). To evaluate method applied to that list of

arguments, we use a particular form, called apply.

Slide 14.3.21
Think of evaluating apply followed by an operator followed

by a list of arguments as being equivalent to evaluating the

expression (operator argument1

argument2 ...). In other words, apply converts

the operator and the list of arguments into exactly the form one

needs for evaluation of an expression using the operator on the

arguments.

So back to ask. It tries to get the method associated with a

message, and if there is one, it executes the evaluation associated

with using that method on the set of arguments, independent of

how many there are. Otherwise, it complains that there is no

method for this message for this object.

Slide 14.3.22
Step back for a second from the details of how we are
implementing this system in Scheme from the higher level issues
of what computational behavior we are building. So why do all
of this?
In designing our OOPS system, we have chosen a convention in
which all messages return a method. This makes it easier for the
implementer, as she doesn't have to remember what kind of
return convention one has for different messages. In all cases, a
message returns a method. To do this, though, we also have to
isolate the lookup of a method from the application of a method,
and we have chosen to build a generic way of doing this. Ask

becomes our standard interface to an instance and a method. Within this procedure we separate the idea of getting a
method from the idea of using that method. But with this generic interface, we can ask any object to do any action.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.23
Let's look at this in action. Let's again create a person, named
George, that we bind to the variable g in the global environment.

Let's see what the environment diagram for this looks like.

Slide 14.3.24
Just like our earlier examples, we see a form we would expect.
The highlighted structure is a procedure that takes in messages,
and which points to a local frame in which state information is
stored. If you are not certain about how this is created, walk
through the details of the application of make-person. In

the global environment, g is bound to this object, this procedure

with local state.

Slide 14.3.25
Now, let's ask g for its name.

Slide 14.3.26
Recall that ask will first get the method associated with this

message and object, by calling get-method on those

arguments. That in turn reduces to evaluating the expression (g
‘WHOAREYOU?), and this in turn reduces
to applying the procedure object g to the
message WHOAREYOU?.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 14.3.27
But for this implementation, we know what that does. g is a

procedure and we are applying it a single argument, so we drop a
frame, scoped by where the procedure's environment pointer
points, and within this new environment we bind the parameter
message to the symbol WHOAREYOU?. E4, this new
environment, now becomes the environment in which we will
evaluate the body of that procedure. That is just a big case
expression, and eventually it returns a method, a method with no

parameter and a body that is just fname. You can see this by

looking back at the definition of make-person.
Thus ask has sent a message to an object through get-
method, which has created an internal frame that captures information about the local environment (i.e. it points

to the same frame as the procedure) and relative to that we have obtained a new object, a procedure that represents
the actual method.

Slide 14.3.28
Having gotten a method back,ask then applies it. And that is

equivalent to taking the value returned by asking g its name, and
evaluating it as a combination with no arguments. The actual
details are slightly different but are equivalent to evaluating the
expression shown.

Slide 14.3.29
And so an application of this method is simply a case of applying
this procedure to no arguments. That again drops a frame, now
scoped by the same frame as the procedure, namely E4. Relative
to this new environment, E5, we evaluate the body of that
procedure, which simply says to evaluate fname, i.e. lookup the
binding for the symbol fname starting in E5. Thus, we trace up
the environment chain through E4 to E3 where we find the
binding. This then returns that value, the symbol george.
Notice the two things going on here.Ask first gets a method,

which creates for us a procedure with a scoping of local frames.
Secondly, the application of that procedure representing a
method causes a new environment, with appropriate scoping to be created so that evaluating the body of the method
procedure has access to the local information of the instance.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

