
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 16.1 

Slide 16.1.1 
Last time, we completed building our evaluator. And as you 
saw, we slightly misled you. We started off saying we were 
going to user Scheme's lexical analyzer and parser, but then 
build our own evaluator, which we did initially for arithmetic 
expressions, then for defines, then for applications, and 
eventually we ended up with something that basically looked 
like Scheme's evaluator, written in Scheme! 
Today, we are going to build on that idea, by examining the 
actual Scheme evaluator. We will run through a quick, but 
grand tour of the full evaluator, looking at several key ideas. 
First, remember that we are basically describing the process of 
evaluation, which in our case means making the environment 
model a concrete set of procedures. Second, the essential message is that by defining the process of evaluation, we 
are also defining our language. This means that the evaluator design then provides the basis on which we can create 
abstractions, especially procedural abstractions, as it provides the mechanism for unwinding the abstraction back 
down to primitive pieces when we want to get an actual value. And finally, given that designing an evaluator is 
essentially equivalent to defining a language, we are going to look at how variations in a Scheme evaluator can 
lead to very different language behavior. 

Slide 16.1.2 
To do this, we are going to have to look at several different 
parts of the language design. We will start with the core of 
eval and apply, then look at how we support the syntax 

of the language, how we create and manipulate the 
environments that let us look up values that are associated with 
that syntax, and then how primitives are installed into the initial 
or global environment. Finally, we will put together the overall 
infrastructure for letting a user interact with the evaluator, and 
we will see all of these pieces as we quickly walk through our 
full evaluator. 
As with previous lectures, there is a code handout that goes 

with this lecture, and we suggest you print out a copy and have it available as we walk through our discussion. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.1.3 
Let's start with the heart of the interpreter. We have already 
seen this with our simple interpreter from the last lecture. The 
essence of the evaluator is a tight loop, in which the evaluation 
of an expression with respect to an environment reduces in the 
general case to an application of a procedure to a set of 
arguments. This in turn generally reduces to an evaluation of a 
simpler expression (the body of the procedure) with respect to a 
new environment (one in which the formal parameters of the 
procedure have been bound to the arguments passed in). 
This loop continues, unwinding expressions, until it reaches the 
application of a primitive procedure to primitive values or the 
evaluation of a primitive data object. 

Slide 16.1.4 
Our convention is that we will use an eval that does dispatch 

on type. Thus, it checks the expression type, and based on that, 
sends the expression to a procedure designed to handle that type 
of expression. Our convention on apply is that it will first 

evaluate the arguments, and then apply the procedure that is the 
value of the first argument to the values of the others. 

Slide 16.1.5 
So here is our implementation of eval. Notice its form. First, 

it is a dispatch on type, so it checks the expression to figure out 
which type matches. Once it does, it sends the expression to a 
procedure specific to that type. Notice that we are assuming a 
data abstraction for checking types. We are not making any 
assumptions about how types are represented, but are rather 
using a set of procedures to check each type. This will allow us 
to cleanly add to or alter our types, without having to change 
the evaluator directly. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.1.6 
Notice the order in which we check things in eval. We first 

start out by checking for primitives, things like self-evaluating 
expressions, or variables. These are easy things to deal with. 

Slide 16.1.7 
Next, we check out the special forms. Remember that this is an 
expression that does not follow the normal rules of evaluation 
for compound expressions. These are things like assignment or 
definition, in which we only want to evaluate one of the 
subexpressions, or things like if, where we know we want to 

evaluate in a different order. Each of these expressions we will 
treat separately, with a specific procedure to deal with that kind 
of expression. We've added a couple of new ones, and we will 
come back to those shortly. The issue to note is that this section 
deals with all the special forms. 

Slide 16.1.8 
Finally, we get to an application. This is the case where we are 
treating an expression that has a set of subexpressions that we 
will evaluate, then apply the operator (or value of the first 
subexpression) to all the rest of them. We have left 
application? as an abstraction to check if something 

is an application, but as you saw with our earlier evaluators, 
most likely we will just make sure this is a combination, 
meaning we will assume that if the expression is a compound 
expression but not a known special form, then it must be an 
application. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.1.9 
In general, however, we see that our evaluator has exactly the 
kind of form that we slowly evolved in our previous examples. 
Given an expression and an environment, eval will check 

the type of the expression, using some abstractions that we will 
get to, to see if it is a primitive, or if it is a special form, or 
ultimately if it is an application. In each case, eval 
dispatches that expression to a specific procedure. We have 
already seen many of these pieces. We know that for variables, 
we should just look up the value of the variable in the 
environment. We know that for quoted expressions, we should 
simply grab the expression as tree structure and return it. 
Similarly for the special forms: a definition should create a new 
binding for a name and a value in the environment; an if should change the order of evaluation of the 
subexpressions. 
For an application, we should evaluate the first subexpression (the operator), then evaluate all the other 
subexpressions, and apply that operator to that list of values. Notice that I have slightly misled you because we 
don't have to assume that the operator is the first subexpression. Operator is simply some data abstraction 

that will get the appropriate subexpression but it could in fact be some piece other than the first or leftmost one. 

Slide 16.1.10 
Here is a quick synopsis of what we see on that evaluator. It 
dispatches on type: first for primitives, either self-evaluating 
things or things that should not be evaluated; then for 
expressions that deal with variables and their manipulation 
within the environment (creating, looking up, or changing 
values of variables); then for conditionals, ways of branching 
depending on the value of an expression; then procedure 
application. 
Note there are several new forms here that we will have to 
define: quoted objects, cond, and begin. Let's take a look at 
some of these. 

Slide 16.1.11 
In our evaluators from the previous lectures, when we applied a 
procedure to a set of arguments, we saw that reduced to simply 
evaluating the body of the procedure with respect to a new 
environment. Evaluation of the body was simply a case of using 
eval on that expression, and that was because we assumed 

the body was just a single expression. Before we introduced 
mutation into our language, this made perfect sense, because 
the value of the body would be the value of the last expression 
in it, and it only made sense to have one expression, since any 
other expression's value in a body would be lost. 
Once we have mutation, however, expressions can do things 
other than return values: they can create side effects. So a generalization for an evaluator is to let the body of a 
procedure be a sequence of one or more expressions. That is shown here, in which we define foo to be a 

procedure whose body has two expressions. The first does something, probably a side effect, and the second of 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

which computes and returns a value. 

We still have to figure out how to do evaluation of a sequence (we'll get to that in a second) but given the idea that 

evaluating a sequence could take a series of expressions, evaluate them in order and return the value of the last one, 

we can now let bodies have multiple expressions, and inside of apply we can generally evaluate the body as a 


sequence, not a single expression. 

Slide 16.1.12 
Thus, our apply, our way of dealing with applications of 

procedures to arguments, will be slightly different. As before, it 
will have a way of dealing with primitive procedures, in this 
case just sending the expression to the underlying machine 
primitive. For compound procedures (application of something 
we built using a lambda), we make a slight change. We still 

create a new environment, binding the parameters of the 
procedure (obtained using the appropriate data abstraction) to 
the values of the arguments in a frame that extends the 
environment specified by the procedure object. Within this new 
environment, we will evaluate the body of the procedure, but 

notice here we will evaluate it as a sequence, not as a single expression. Thus, we will treat the body as a set of 
expressions, evaluate each one in order, and then return the value of the last one as the value of the entire 
application. 
With that, we now see the intertwining of eval and apply. Let's take a look at some of the specific pieces. 

Slide 16.1.13 
First, self-evaluating expressions. Remember that exp is just a 

tree structure, and in this case, we simply return that tree 
structure directly. Thus numbers get returned without any 
additional work. 

Slide 16.1.14 
If an expression is just a variable (a symbol) we will just look 
up that variable's value in the environment, and we'll deal with 
details of that shortly. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.1.15 
Next, let's skip down to procedure applications. With our 
change, we can see that the evaluator gets the value of the 
operator by recursively evaluating that subexpression, then gets 
a list of values of the other expressions (note that we explicitly 
require a list here) by evaluating each piece in turn and 
constructing a list. Note, however, that our data abstraction 
isolates the issue of the order of the arguments from our 
evaluator. We don't know if the operator is the first expression 
or not in this case. Operator will simply select out 

whatever we decide on in terms of syntax for our language. 
And as we saw, apply will now evaluate the sequence of 

expressions that it assumes the body contains. 

Slide 16.1.16 
What about ifs? We know that an if expression should take 

a set of expressions, evaluate the first subexpression (or rather 
we are assuming it is the first subexpression) and then 
depending on that value, either evaluates the consequent or the 
alternative. 

Slide 16.1.17 
And what about begins? Remember that a sequence is either 

something identified by an explicit begin statement or is 

used as the body of a procedure, as we just saw. In this case, we 
want to extract the set of expressions, and evaluate them. We 
use the following trick, shown on the next slide. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.1.18 
Our plan is to evaluate each of the expressions in order. When 
we get to the last one, we should return its value as the value of 
the entire sequence. We will bury some of the details behind 
data abstractions, but we can see the general form for 
evaluating a sequence. If we have the last expression, we will 
simply evaluate it and return the value. If it is not, we evaluate 
it, then recursively walk down the sequence and do the same 
thing. 

Slide 16.1.19 
Expressions like definitions and assignments either create or 
change existing bindings of variables and values in the 
environment. Notice the form, however. In both cases, we get 
out the part of the expression that corresponds to the new value, 
and actually evaluate it, by recursively applying meval to it. 

We simply get out the part of the expression that corresponds to 
the variable as a tree structure manipulation, however, without 
evaluation. Then we do the appropriate manipulation of the 
environment. 
Notice how by using data abstractions we have not specified 
what order the expressions will take. While we will eventually 
decide that, from the perspective of this code, any change in that order will not affect the evaluation process. 

Slide 16.1.20 
So there is the whirlwind tour of eval and apply. We 

have buried some details behind some data abstractions, which 
we will address shortly. The part that you see here really is the 
heart of evaluation. 
The essence of the evaluator is a tight loop, in which the 
evaluation of an expression with respect to an environment 
reduces in the general case to an application of a procedure to 
a set of arguments. This in turn generally reduces to an 
evaluation of a simpler expression (the body of the procedure) 
with respect to a new environment (one in which the formal 
parameters of the procedure have been bound to the arguments 

passed in), while inheriting values from other environments. 

6.001 Notes: Section 16.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.1 
So what have we done so far? Basically we have defined the 
semantics of our language. By defining eval and apply
we have specified what the language means and the model of 
computation we are going to use. Notice that we have done this 
in terms of data abstractions. Everything we have used to pull 
out list structure from expressions has used an abstraction. 
There are no cars and cdrs anywhere in the code so far. 

This is important, because we have separated the syntax of the 
language from the semantics of the language. But eventually we 
do need to focus on the syntax, the details of how we write 
legal expressions in our language. This will force us to specify 
things like how to identify kinds of expressions, and the order 
of arguments. At the same time, this separation of syntax from semantics is extremely useful, as it allows us to very 
easily change the syntax without having to change the actual evaluator. We simply change the interface to the 
abstractions. We are now going to examine this issue, by looking at details of implementing the abstractions and by 
looking at changes to that abstraction. 

Slide 16.2.2 
The second page of the code handout contains all of this in 
much more detail. Here we will simply highlight some of the 
key issues in syntax. 
First, we need a set of routines to detect different kinds of 
expressions. An easy way to do this is to have each one of them 
check to see if it is a "tagged" list. So, for example, if? will 

check to see if the expression is a list, that is something 
constructed out of cons pairs. It will then check to see if the 

first element of that list is the symbol if. Ditto for lambda. 

For application, we will use a slightly different form. We will 
assume that anything that has not been caught by one of the tag 

checkers for a special form but is in fact a list of expressions, we can treat as an application. This means that we 
may get into some trouble but it is the easiest way of allowing us to generalize to having any kind of procedure 
applied to any set of expressions as long as that procedure was created using our lambda. 

Slide 16.2.3 
Given that we can detect different kinds of expressions and ship 
them off to the procedures that handle them, those procedures 
will also need to have ways of getting information out of 
expressions. They will have to have ways of pulling out pieces 
by walking down the list structure. So, for example, if we have 
an application, we need a way of getting out the operator, and 
the other expressions. Here we will assume that the first 
subexpression is the operator, so we use car to get it out of 

the expression. And we will assume that operands is a list of all 
the remaining expressions, so we use cdr to get that part. Of 

course we could have made a different design choice, as we 
will see. The key point is that we now have an abstraction that pulls out pieces to pass on to the evaluator. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.4 
And we will need routines that manipulate expressions, that is, 
walk along the expressions finding pieces. For example, if we 
are applying a procedure to a set of arguments, we need to get 
out different parts of the argument list. So we will have 
something to check if there are arguments, something to get the 
next operand, and something to get the other operands. This is 
just list structure that we are manipulating. Notice that we have 
made an explicit choice about order, assuming the operands are 
arranged in a left-to-right ordering. 
Overall, our syntax (see page 2 of the code) is defined by a set 
of expressions to deal with the list structure that is passed in to 

the evaluator. These procedures walk down the list structure to 
test for kind of expression, to get out pieces or otherwise manipulate that list structure. 

Slide 16.2.5 
The rest of the code on page 2 of the handout just fills out the 
rest of the details of the syntax, the representation of 
expressions. Look it over to be sure you understand it, but it is 
basically the same sort of material: tagged lists for identifying 
types, list operations (car and cdr) to get out pieces. 
As we said earlier, one of the reasons for using data 
abstractions everywhere within eval is to let us separate the 

syntax from the semantics. Eval and apply define the 

semantics, how expressions get their values in this language. 
The syntax tells us how to write legal expressions in this 
language. By doing that separation, we can make changes to the 
syntax without affecting the semantics. Here is one such example. 

Slide 16.2.6 
Suppose I decide that rather than having the convention that the 
operator is the first subexpression of a combination, and the 
operands are all the other subexpressions, instead I want to be 
much more verbose. I might want expressions like the one 
shown here, explicitly identifying the procedure and the 
arguments. How would I make this change to my language? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.7 
We have already hinted at the answer. All we need to do is 
change the syntax. For example, now checking to see if 
something is an application involves looking to see if the first 
element of the list is the special symbol CALL. This is clearly 

different from our earlier version, where we assumed any 
combination that was not a special form was an application. 
Here, we are explicitly identifying applications. 

Slide 16.2.8 
So how do I get out the pieces? Before, we would have gotten 
the operator as the first subexpression, here it is the second 
subexpression, since the first subexpression is the symbol 
CALL. And for the operands, we have to skip past the ARGS 
to get the right parts. Again, the key point: all I have changed is 
the syntax, the routines that walk down the tree structure and 
pull out the pieces. Nothing has changed in eval or 

apply. 

Slide 16.2.9 
The second reason for separating syntax from semantics is that 
it allows us to easily accommodate alternative forms for 
expressions. We often call this "syntactic sugar", meaning that 
it looks nicer, but it actually just coats the same underlying 
idea, with a sweeter way of expressing the same thing. Let me 
show you an example. Remember let? 

We could treat let as a special form and write a handler for 

it. We could have something that handles dispatches, having 
detected expressions of this type (let). But we could also realize 
that let is just a cleaner way of creating a procedure, then 

applying it to capture some local state variables. 

Said another way, a let expression is really just the same as the expression shown here. That is, we create a 


lambda, whose argument list is the same as the arguments for the bindings in the let, whose body is just the 


body of the let, and that lambda would then be applied to expressions whose values we want to bind to those 


names. These are equivalent forms. As we saw in the environment model, they create exactly the same kind of 

structure. 

So rather than building a special form for let, let's see how we could use syntax and syntactical manipulation to 


convert this form of let into an application of a procedure to a set of arguments. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.10 
First, here is the change we will make inside of our evaluator. 
We will have something that detects lets. What we will do in 
this case is write something that manipulates the syntax, turns a 
let into a combination, and then simply evaluates that 
combination, i.e. recursively calls meval treating this as a 

normal combination. 
Thus in this case the dispatch is different. Rather than going off 
to a procedure, it manipulates syntax, then evaluates the new 
expression. 

Slide 16.2.11 
Thus now we just need to figure out how to rewrite the tree 
structure that represents a let expression into something that 


looks like a procedure application. 

First, we will need a way to check if we have a let

expression, which is just a tagged list check, as before. Next, 
we need to pull out the variables of the let, we need to pull 

out the values to which they will be bound, and we need to pull 
out the body. Notice how let-bound-variables 
takes in one of these tree structures, will get the cadr which 

gives us the set of let clauses, and then will map car down 

that list. As we will see, this pulls off all the variable names from the clauses. 
Getting the values is almost the same, but maps cadr down the list of clauses. For the body, we simply take the 

cddr of the expression to get everything but the let tag, and the variable clauses. We convert that into a single 

expression by wrapping a sequence label (a begin) around it. 

Ignoring for the moment the specific details, these three procedures are basically walking through the tree structure 
corresponding to a let expression, and pulling out the right pieces: the list of variables, the list of values and the 

body (which gets converted into a sequence). 

Slide 16.2.12 
Now we can put all of this together. So let-
combination is going to take in a tree structure 

representing a let expression. It will then convert this into a 

form that we can just evaluate. 
To do this, it takes the tree structure corresponding to the 
variables, the tree structure corresponding to the values, and the 
tree structure corresponding to the body, and then it creates a 
new tree structure. Notice this structure! The first part of this 
list (because we are doing a cons) is a list that represents a 

procedure in our syntax. It is a list of the symbol lambda, 

followed by a list of names, followed by a body! That looks exactly like a lambda expression. 

And then we put that at the beginning of a list of the values. So this will convert a let combination into a new 

tree structure, a tree structure that looks exactly like an application of a lambda to a set of values. That will then 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

be passed to meval, which will cause the evaluation of the whole expression, creating the thing we want. 

Slide 16.2.13 
So let's trace this through. Remember that a let expression 

such as that shown on the slide gets converted by the parser into 
a tree structure that looks exactly like this. The first part of the 
tree is the symbol let, the second part is a tree that captures 

the set of clauses, and the last part is another tree that represents 
the body of the let. This tree structure is what is passed into 

meval and let's see what happens when we do that. 

Slide 16.2.14 
What does the syntactic manipulation that converts a let 
expression into a combination do? First it wants to get the 
bound variables, and the code says to get the cadr of this 

tree. So it is going to grab this piece ... 

Slide 16.2.15 
... and then it says to walk down this piece of list structure, 
using a map, and apply car to each element. That creates a 

new list, with the car of each element of the old list copied into 
that list, shown as ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.16 
... here. The next thing it does is take the same cadr 
structure, but now map cadr down it. This creates a new list 

structure, copying the cadr of each element onto it, creating 

this ... 

Slide 16.2.17 
... structure. And then this syntactic manipulation procedure 
walks down the let tree structure and grabs the body, given 

us this ... 

Slide 16.2.18 
... structure. Note what we have done. We have created three 
new pieces of list structure here. We have done NO evaluation, 
we have simply manipulated pieces of the tree structure. Given 
those pieces, we now glue them together. The code says to 
create a list with the symbol lambda, followed by the set of 

names, followed by the body. Take that whole piece and put it 
on the front of the structure representing the values. 

Slide 16.2.19 
That gives us this list structure, which represents an expression, 
and check out its form. We have a list whose first element is a 
lambda expression, followed by a list of expressions, and 

we return a pointer to this whole list structure. Evaluating this 
tree structure, or if you like the expression that is represented 
by this tree structure turns into an evaluation of an application, 
as we wanted. 
So the key point is that we can do syntactic manipulation of 
expressions to convert one form into another form, in this case 
converting a let into its underlying lambda application. 

Then we let our evaluator do the work to complete the 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

evaluation. 

Slide 16.2.20 
What other syntactic variations are possible? Remember how 
we had named procedures, that is, forms such as that shown in 
the slide. Earlier, we would have had to write (define
foo (lambda ...)) to separate the lambda that 

created the procedure from the define that gave it a name. 

We saw it was convenient, especially when thinking about the 
substitution model, to have this alternative form, in which we 
clearly identify the application of a procedure to a set of 
arguments. How can we add this form to our system, which so 
far meval cannot support. 

In terms of semantics this is just another define. We are 
defining a variable to be a particular value. What else do we need? 

Slide 16.2.21 
So we don't want to change the semantics. Evaluating a 
definition should behave exactly the same as before. All we 
need to do is change the syntax, that is, the thing that 
manipulates the tree structure, to support both kinds of 
definitions of procedures. 
Before, getting the value out of a definition would have simply 
grabbed the third subexpression. But now we can be careful. 
We will first check to see if the second subexpression is a 
symbol. If it is, then we know we have the form of a define we 
handled before, and we will simply grab the right piece and 
return it. On the other hand, if it is not a symbol, then we can 
assume we have one of these new forms. What should we do in 
this case? We need to desugar or unwrap the hidden lambda. So we will construct a new lambda using a 

constructor for lambdas, passing in the formal parameters, which we get by walking down the tree structure of 

the expression, and the body, which we also get by walking down the tree structure of the expression. In this 
getting the value of the expression will convert the actual expression into a lambda. This is great, because that 

then gets passed back to eval-definition, which evaluates this expression to create the procedure, 

which is then returned to be bound to the name. 
Notice how again we are simply manipulating the tree structure of an expression to convert it into a new 
expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.2.22 
In summary, we have both created eval and apply to 

define the semantics for our language, and we have separately 
defined the syntax, the legal expressions in our language. By 
using data abstractions between eval and apply, and the 

procedures that manipulate expressions, we give ourselves a 
clean way for changing syntax, for adding to the syntax, for 
manipulating syntactic variations on expressions, without ever 
changing eval or apply. 

Thus we have seen both the semantics and the syntax of our 
language. 

6.001 Notes: Section 16.3 

Slide 16.3.1 
So you can see that we are making progress in building a 
complete evaluator for Scheme. We started by building eval 
and apply, on top of some data abstractions so that we could 

see the flow of evaluation: between evaluating an expression 
with respect to an environment; to applying a procedure to a set 
of arguments. We have also filled in the details of the evaluator, 
separating the semantics from the syntax, i.e. how we write and 
manipulate expressions in the language. 
What else do we need to fill in? What about environments? So 
far, we have simply relied on there being some kind of abstract 
table for dealing with storing of bindings, and retrieving them. 
Let's make that explicit as well. 

Slide 16.3.2 
What do we need in an environment? Abstractly we just want to 
build the environment diagrams we had in our model. That is, 
we need a way of taking bindings (pairings of names and 
values) and gluing them together into tables. Those tables will 
need pointers to other tables, to allow for sequences of frames. 
Thus we need to glue things together as sequences of tables, 
and the tables need to glue together bindings of variables and 
values. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.3.3 
We can just do this using list structure! Page 3 of the code 
handout shows this. An environment will be created as a list of 
frames. Thus in this example E2 would be a list whose first 
element points to a frame and whose cdr points off to the 

enclosing environment. This list can continue until it terminates 
in the global environment, as the last element in the list. 

Slide 16.3.4 
To represent a frame, we have lots of choices. Abstractly, we 
need a paired collection of variables and values. We could just 
glue them together in that order: variable, value, variable, value. 
A second way however is to create two lists: The first 
component will be a list of the variables, and the second 
component will be a list of the corresponding values. The 
correspondence or binding is determined by the order: the first 
variable matches the first value, the second variable matches 
the second value, and so on. 

Slide 16.3.5 
As we have seen, the integral loop of eval and apply is 

to reduce the evaluation of one expression with respect to some 
environment to evaluation of another expression with respect to 
a new environment that extends the original environment. So 
we need to specify how to extend an environment to allow for 
this new evaluation. 

Slide 16.3.6 
Abstractly, we should take a list of variable names, a list of 
corresponding values, and a current environment, and we 
should create a new frame that is enclosed or scoped by the 
original environment, and within which the list of parameters is 
bound to the corresponding list of variables. This is just our 
environment model. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.3.7 
Concretely, our environment was just a list of frames, so to 
extend an environment we simply want to add to the front of 
that list a new frame. Check the code, which simply "conses" a 
new frame onto the existing environment. And what is a frame? 
It just constructs one of these pairings of a list of variables and 
a list of values. The code is careful to ensure that number of 
variables and values matches. 
Thus in our concrete implementation, extending an 
environment just creates a new frame by pairing up two lists, 
then puts that frame at the front of the list of frames that 
represents our environment. We now start evaluation with 
respect to the new frame at the front of the list. 

Slide 16.3.8 
Once we have an implementation for building environments, 
we can turn to using them. In particular, environments are 
intended to help us look up values of variables. We now need 
some procedures to support value lookup. So what do we need? 
First, we should look for a binding in a frame. Thus we will 
take the current frame and loop through the list of variables and 
the list of values in parallel (remember that we stored those as 
two separate lists in our implementation). Thus we just walk 
down these lists in synchrony. If we find the variable for which 
we are looking, we return the associated value. If we reach the 
end of that pairing of lists without finding the variable, then we 

know there is no binding for that variable in this frame. Thus 
we move on to the next enclosing environment. And we know all of this should just be manipulation of list 
structure. The next slide shows the detailed code to do this for us. 

Slide 16.3.9 
To implement this idea in our particular structure, we just need 
two different looping mechanisms. The first one, when we are 
going to look up a variable value, loops over environments. So 
notice what env-loop does: it takes in an environment, 

and if it is empty, complains about an unbound variable; 
otherwise it will look in the first frame of that environment for 
a binding, where first-frame is just a data abstraction 

for getting the first frame of the sequence. If it doesn't find a 
binding there, it should move on to the next frame in the 
sequence. Thus, env-loop is the top-level loop for looking 

up bindings in a frame. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.3.10 
Once it gets the first frame of the environment, the method runs 
a second loop, scan on that frame's list of variables and list 

of corresponding values. Scan works its way down both lists 

in synchrony. If it runs out of variables, it must not have found 
a binding in this frame, and we go on to the next frame. Notice 
that it calls env-loop to go back up to the top level to get 

the next frame and rescan. 
If there are variables left to check, then we compare our search 
variable against the next one in the list. If it is, I return the next 
element from the values list. If it is not, I scan again, moving 

in synchrony down both lists. 
There are the two loops that let us look up the value of a variable in an environment. 

Slide 16.3.11 
Other aspects of manipulating variables in environments, e.g. 

setting a variable, will have a very similar form. In the case of 

setting a value, we similarly look for the right pairing, then 

change it (see the code for details). 

Thus we can build environments just out of list structure. 


6.001 Notes: Section 16.4 

Slide 16.4.1 
To get things going, we need an initial environment, also called 
the global environment. This will be our default environment, 
where we will normally evaluate expressions from the user. 
Therefore, in this environment we need bindings for the built-in 
names of procedures. This will also be our backstop, meaning if 
we look through all the environments for a binding, and get to 
and through the global environment, without out finding a 
binding, we will stop and signal an unbound variable error. 
Remember that we are representing our environment just as 
lists of frames, so to get the initial environment, we will take an 
empty environment (just the empty list) and extend it, building 
a single frame in which we do the following. We take a set of 
possible names for built-in primitives and a set of procedures to go with those names, and we will install them into 
the environment. Look at the code handout on page 4 to see how we give our own names to the built-in Scheme 
primitives. Remember that the names are our choice: here we have used the same ones as those in Scheme but we 
could have made other selections. Also notice that the set of things we choose to have as primitives is also our 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

choice. In addition to creating bindings for our primitive procedures, we also create bindings for true and 

false to the Boolean values used by the machine to represent these values. Finally we return this environment 

as our initial environment. 
For details, check out the code handout. 

Slide 16.4.2 
To interact with our evaluator, we need some mechanisms for 
getting expressions into it. For this, we build a simple little 
driver loop, which is often known as an REP or read-eval-print 
loop. This loop runs through a constant cycle of reading in an 
expression, evaluating it using the interpreter, then printing out 
the result and cycling to read the next expression. Note how the 
code on the slide runs through exactly that cycle. 
It prints a prompt to the user on the screen, then reads in an 
expression using Scheme's read operator. It then passes that 
parsed tree structure to our evaluator for interpretation, with 
respect to our global environment. When done, it prompts the 

It then cycles through this process again. 
user with a note that the value follows, and prints out the value. 

With this piece we have completed our construction of an evaluator. We have eval and apply to unwrap our 

abstractions to primitive operations, we have a definition of the syntax of the language which is abstracted away 
from the interpreter to allow ease of modification, we have details of how to create and use environments to hold 
our values for variables, and we have a simple interface to the interpreter. 

6.001 Notes: Section 16.5 

Slide 16.5.1 
So there you have it! We have built an evaluator for Scheme, 
implementing eval and apply. Although there is a lot of 

code here, you should try to step back from the details to see 
the general outline of this evaluator. 
Having built our evaluator, we can ask some questions about 
choices that were made in designing this evaluator. In 
particular, we said much earlier in the term that Scheme uses 
lexical scoping. So what does that mean? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.2 
Think about what happens when we apply a procedure to a set 
of arguments. In detail, we get the values of the arguments and 
the value of the procedure, then we create a new environment in 
which the variables of the procedure are bound to the 
arguments passed in, and relative to that environment we 
evaluate the body of the procedure. So what happens inside that 
body? In particular, that body will be an expression that 
contains lots of names, and the issue is: how do we find the 
values associated with those names? 
First, any name that was a formal parameter of the procedure 
gets its value from the frame we just created. Those are called 
bound parameters. But any variable in that body that is not 

one of the formal parameters is known as a free variable. How do we find the bindings for those? We have said 
that if we have a procedure that has free variables, the values for them come from bindings made by enclosing 
procedure definitions. In other words, they are looked up in the environment in which the procedure was defined. 

Slide 16.5.3 
Or said another way, it says we walk up that chain of 
environments looking for a binding of the variable. And we 
know that chain of environments comes from sets of 
procedures. So if our procedure is defined inside another 
procedure we know that if we can't find a scoping (a formal 
parameter) binding the thing we are looking for in the initial 
lambda we go outside the scope of that lambda to the 

enclosing lambda, looking for a corresponding formal 

parameter here. Thus, the boundaries of the lambda 
expressions define the chain of frames we are going to see in 
our environment model, and that is how we are going to capture 
our lexical scoping to determine the values of variables. How does this happen in practice? 

Slide 16.5.4 
Look at the code for make-procedure, which you will 

find on page 3 of the handout. It glues together a tag, the 
parameters, the body, and the environment in which it is 
evaluated. As a consequence, the evaluation environment is 
stored away and is always going to be the enclosing lexical 
scope. It is going to tell use where to look to find a binding for 
a free variable. Why? 
Well that was just a design choice! This came from our design 
of procedure application, which said: hang a frame, bind the 
parameters to the actual values passed in, then evaluate the 
body in this new environment. The choice here was to scope 

together frames based on where the procedures were actually evaluated. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.5 
So let's remind ourselves of how that works. This is just 
reviewing the environment model, but with our detailed 
implementation now in mind. Suppose we consider the 
definition shown here. In the environment model, we know 
what happens ... 

Slide 16.5.6 
Evaluation of this expression will create a binding for foo in 

the global environment to a procedure of arguments x and y 
coming from that hidden lambda (due to the desugaring of 

the syntactic sugar). Note that the body of this procedure is 
another lambda expression that has not yet been evaluated, 

but just exists as tree structure. 

Slide 16.5.7 
Let's apply foo to a couple of arguments, and give the result 

the name bar. Foo then hangs a new frame scoped by the 

same environment as the procedure, binds x and y to the 

values 1 and 2, and relative to this frame we evaluate the body. 
This is another lambda so we create the double bubble 

scoped by this frame since that is where the evaluation takes 
places. Bar is bound to this value, i.e. this procedure object. 

Slide 16.5.8 
Now let's apply bar. We can trace through our evaluator, or 

alternatively our environment model, to drop a frame whose 
enclosing environment is identical to the procedure's, within 
which we bind the formal parameter to its argument, and 
relative to which we evaluate the body of this procedure. Notice 
that we are getting the values of x, y and z with respect to 

E2. Thus the binding for z will come from this frame as it is 

scoped by the lambda but to get the bindings for x and y
we move up the chain to the next frame which comes from the 
enclosing lambda. To get the value of + we move further 

up the chain to the global environment. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.9 
As a consequence of this, we can see that we will always 
evaluate the expression (+ x y z) (the body of bar) in 

a new environment within the lexical scope established by the 
enclosing procedure. Every time we apply this procedure, we 
will hang a new frame that will always scope back to E1, which 
is the surrounding lexical environment, meaning we will always 
get the same bindings for x and y. 

This was a particular choice we made in constructing our 
evaluator, but it is not the only such choice. 

Slide 16.5.10 
An alternative way to get bindings for free variables would be 
to look them up in the caller's environment, meaning in the 
environment that corresponds to the procedure asking for the 
values, rather than in the surrounding lexical environment. This 
will lead to a different behavior, and this style of handling free 
variables is known as dynamic scoping, because it is based on 
the values in place when the caller asks for them. 

Slide 16.5.11 
This model leads to a different behavior. Consider this 

definition for pooh. Notice that there is no explicit reference 


to the parameter x within this body. We can define bear as 


shown. Notice that x is used in the body of bear but there is 


no explicit parameter for x in the definition. Thus, bear

needs to get the value from somewhere else. 

If we call (pooh 9) it will call (bear 20) and given 


that the value of x was specified to be 9 in the call to pooh

we could get out the value shown. 

This looks strange, as this certainly would not work under 

lexical scoping, or our normal Scheme. We are now changing the behavior of our evaluator, we are asking pooh

to set a binding for its parameter x so that when bear is used, it can use that value of x created in the caller's 


environment. 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.12 
Suppose we want to change our evaluator to use dynamic 
scoping rather than lexical scoping. Conceptually, how would 
this change our environment model? First, note that our double 
bubble becomes a single bubble. Under dynamic binding we 
don't need to keep track of the enclosing environment in which 
a procedure was created, as it is no longer used to define the 
scoping for free variables. 

Slide 16.5.13 
Now, let's apply pooh to some argument. Applying pooh
under this new model says to drop a frame in which we bind the 
formal parameter x to the value 9. That frame now gets scoped 

by the caller's environment, which in this case happens to be 
the global environment, since that is where we are asking for 
the evaluation. So far this looks like before. Now, relative to 
that frame we are going to evaluate the body of pooh. 

Slide 16.5.14 
And the body of pooh says to apply bear. Thus, we apply 

a procedure so we build a frame in which y is bound to 20. 

But now, the scoping environment for this frame is the 
environment in place when the caller asked, i.e. E1. It does not 
inherit the environment that was there when bear was 

created but rather it inherits the environment that was used 
when the value of applying bear was asked for. Now we can 

evaluate the body (+ x y) in this frame, and thus it will 

inherit the value of x that was passed in back when we 

evaluated pooh. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.15 
The key thing to note is that we will evaluate the expression 
(+ x y) in an environment that extends the caller's 

environment. This means that as we call this at different times, 
we will have different environments, as opposed to the lexical 
case in which we would always point back to the environment 
created when the procedure was created. 
So we can see we can get a very different behavior when we 
shift to dynamic scoping. 

Slide 16.5.16 
We will return to the issues of why one might want to have 
dynamic binding rather than lexical binding. Here, we want to 
focus on how simple it is to make this change in our evaluator. 
In fact, only a very small number of changes can cause this 
drastic change in behavior. 
First, when we evaluate a lambda we will make a procedure 

as before, but now we don't need to include the enclosing 
environment. We don't make a double bubble, we make a single 
bubble. Thus we can use the same form, but just pass in a 
symbol indicating that no environment is stored. 

Slide 16.5.17 
The second change occurs when we go about actually applying 
a procedure (something we built with a lambda) to a set of 

arguments. Remember that in the previous case, we got the 
value of the operator, we got the values of the operands, and 
then we apply the operator, which meant evaluating the body of 
the operator in a new environment that extended the 
environment part of the procedure with a frame binding the 
parameters to the values. Here, we change that. Now our 
application says: get the value of the operator, get the list of 
values of the operands, and then apply that operator in the 
current environment. Thus we have added one more argument 
to our apply. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 16.5.18 
The only other change we need is a dynamic apply. This 

apply takes in a procedure, a list of values, and an 

environment, the environment that the caller is in. 
For primitives, this apply does the same thing. However, 

application of a compound procedure (something we built with 

a lambda) will evaluate the body (which we expect to be a 


sequence) in an environment, but here the environment comes 

from extending the calling environment. 

The key thing to note is how an incredibly small set of changes 

to eval and apply can dramatically change the way in 


which variables are interpreted. 

Slide 16.5.19 
This was really the whole point of this example of dynamic 
scoping. It leads to a different kind of behavior and it is worth 
thinking about what kinds of advantages one might get from 
such a change. But what we have really done is show how by 
making a few small changes to eval and apply we have 

changed the semantics of the language. That is exactly the point 
of having eval and apply. They define what it means to 

evaluate expressions in a language. 
The second point is that by cleanly separating the syntax of a 
language from the semantics, we have enabled making that kind 
of change in an easy manner. The data abstractions that define 
the syntax separate them from the rules for interpretation. Thus we can change the evaluation rules, but not have to 
make any changes to the syntax. 
In the next lecture, we will return to the idea of changing the rules of evaluation, and examining the impact of those 
changes on the behavior of the language. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


