
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 17.1

Slide 17.1.1
Over the past few lectures, we have been looking at evaluation,
especially how to implement eval and apply in a

language such as Scheme, in order to define a language. What
we have seen is that by creating, or specifying, eval and its

associated procedures, we actually define the semantics of the
language: what it means to determine an expression's value, or
to associate meanings with expressions in the language.
We have also separated the semantics of eval and apply
from the syntax of the language, meaning: how we choose to
write an expression can be interfaced through a data abstraction
into the deduction of meaning associated with the expression.

In this lecture, we are going to look at variations on Scheme. We are going to explore the idea of how, by making

changes, in many cases very small changes, to eval and apply, we can cause the language to behave in a

very different fashion. We are going to look at how we gain some benefits (sometimes with a little cost) by making

those changes, trading off design issues in the language for performance issues in actually using the language.

Slide 17.1.2
To set the stage for what we are about to do, let's remind
ourselves of what normal Scheme does. Remember that we said
Scheme is an applicative order language. That means that when
evaluating a combination, we first evaluate all the arguments,
reducing them to actual values, including the first argument,
which in our syntax is the operator. We then apply that
operator (the procedure associated with that first argument) to
the values of all the other arguments. Thus, we apply the
procedure to the values.

Slide 17.1.3
Now, while we have been accepting that as our method of
operation in Scheme, in fact it is a design choice. This was a
choice made by the creators of Scheme. There is at least one
other way of designing the system, called normal order
evaluation.
In normal order evaluation, we do the following. When given a
compound expression, we apply the operator (the value of the
first subexpression) but to unevaluated argument
subexpressions. Said another way, when given a compound
expression, we can evaluate the first subexpression, but then
can simply take the other pieces and substitute them into the

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

body of the procedure, and continue this process until we actually need the value of one of those subexpressions. In
fact, we will evaluate a subexpression only when the value is needed in order to print something out, or because a
primitive procedure is going to be applied to it. Thus, primitive procedures will be strict in requiring that their
arguments are actual values.
Thus, normal order evaluation would have a very different substitution model than applicative order evaluation. In
essence, we would take the subexpressions, substitute them into the body of the procedure, and keep doing that
substitution until we have an expression that involves only primitive procedures and their application.
Our goal is to understand how that model leads to different evolution of the language, and how might we create
such a language.

Slide 17.1.4
To visualize the difference between these two kinds of
evaluation, let's look at an example. Here is an example using
applicative order (the normal kind of Scheme). We define foo
to be a procedure as shown. What happens if we call foo with

the sequence of expressions shown as argument?

Slide 17.1.5
In standard Scheme, the first thing we do is evaluate each of the
subexpressions. We get the value of foo, which is a procedure

object. We also evaluate the argument to foo at this stage.

Evaluating this begin statement leads to the following

behavior.

Slide 17.1.6
Evaluating the argument says we must evaluate this begin
expression, and therefore we evaluate the first subexpression,
which writes out on the screen: eval arg.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.1.7
We then evaluate the second subexpression in the begin
expression. Since this is the last subexpression in this begin,

that is the value returned as the value of the argument to foo.

Slide 17.1.8
So now we apply the procedure named foo to that argument,

222. By the substitution model, that reduces to evaluating the

begin statement shown on the side in blue. We could, of

course, use the environment model here, but the substitution
model is sufficient for our purposes.

Slide 17.1.9
Of course, evaluating this begin expression's subexpressions

in order means we first write out: inside foo; then we

evaluate the actual addition, and return the value 444.

Slide 17.1.10
So let's summarize what we did. We first evaluated the
argument, then substituted that value into the body of the
procedure. This lead to the observed behavior, as written out,
that we evaluate the argument once, then proceeded inside the
procedure, then we returned the value. Keep that in mind as we
now go to the alternative model.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.1.11
Now, let's think about the alternative model. This is a normal
order model, in which we are going to first evaluate the
procedure subexpression to get the procedure, but then the
arguments we are going to substitute into the body of that
procedure, and keep unwinding the evaluations until we get
down to things that either involve printing or application of
primitive procedures. Same definition of foo, same call, but is

there a different behavior?

Slide 17.1.12
In this case, we get the value associated with foo, but we

substitute the entire argument into the body of foo without

evaluation. This leads to the evaluation of the begin
expression shown on the slide. Notice that no evaluation of the
argument has taken place yet, just substitution of tree structure.
Thus, nothing has been printed out on the screen yet.

Slide 17.1.13
In this case, we evaluate the subexpressions to the top-level
begin in order. Thus we first evaluate the line that says we

are inside foo, which gets printed out as shown.

Slide 17.1.14
Then, we turn to the next subexpression inside the top-level
begin. Here we evaluate the first subexpression of this

combination, namely +. This has as a value a primitive

procedure. So in this case, we need to actually evaluate the
argument expressions; there is no further substitution possible.
Thus we evaluate the first of the two interior begin
statements, which writes out: eval arg; then gets the

value of 222 and returns it to +.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.1.15
Then, do the same thing for the second interior begin
expression, since + is a primitive procedure and requires its

arguments be evaluated.

Slide 17.1.16
Then actually apply the primitive procedure to the arguments,
and return the value.

Slide 17.1.17
So now we see there is a difference in behavior. Remember in
the applicative order case, we noted that we first evaluated the
argument (once) and then we went inside the procedure.
Here, it’s as if we substituted the unevaluated arguments into
the body of the procedure. Thus we first went inside the
procedure, then when required by a primitive procedure, we
evaluate the argument. And since it has been substituted twice
into the body, we evaluate it twice.
Our goal then is to note that normal order has a different
behavior: substitute until required to evaluate. Applicative was:
get value, then substitute. So why is this a useful change to
make? And how do we change our evaluator to achieve normal
order evolution.

6.001 Notes: Section 17.2

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.1
Let's deal with the second issue first. What changes should we
make to eval and apply in order to implement this new

idea of normal order evaluation (sometimes also called lazy
evaluation). Note that it is called lazy evaluation because we
are only evaluating arguments when required, either because we
need to print them out or because we are down to primitive
procedures. So what changes are needed?

Slide 17.2.2
Let's start with the application of a compound procedure,
something we have built with a lambda. We know we want

to evaluate the body of that procedure in a new environment,
but what should the environment do? Extend-
environment should take the set of parameters of the

procedure, but glue together with them, not with the actual
values, but with a set of delayed arguments. And what is a
delayed argument? Let’s create a structure that let's us hold off
on getting the actual value of an argument. That makes sense if
you think of our example. When we want to apply a procedure,
we want to take the argument expressions and substitute them

into the body without evaluation, but as unevaluated tree structure.
So our change in applying a compound procedure is to still evaluate the body of the procedure in a new
environment, but rather than binding the procedure's parameters to their actual values, we will bind them to these
special structures that keep track of the expression to be evaluated when required, plus we will have to keep track
of the environment in which that evaluation should take place, when required.

Slide 17.2.3
That last point is worth stressing, because it is a change. Prior
to this, apply didn't need to know about it's environment.

We simply applied a procedure to a set of argument values.
Here, because we delay getting the argument values, we need to
keep track of the information needed to actually compute the
values when needed, meaning the environment in which the
expression should be evaluated. Thus we need to pass the
environment in as an argument to apply so that we can pass

it through to the construction of the delayed evaluation objects.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.4
So with this change, compound procedure application will
correctly delay the evaluation of the arguments. We will
implement list-of-delayed-arguments
shortly. Conceptually, we know that it should simply take a list
of expressions, and glue onto these expressions a marker that
identifies them as delayed.
Ultimately, however, we will reduce to a primitive application,
and in that case, we want to do the actual work of evaluating
the arguments. Thus, our other change will be to require when
applying a primitive procedure, we need to ensure that the
arguments are reduced to actual values. This means we will
force any delayed evaluation to now take place. Here again we

will need to pass the environment into the procedure list-of-arg-values because we are going to

have to walk our way down this list of expressions, asking each to be evaluated with respect to the environment.

Slide 17.2.5
Notice that we have made only a small number of changes:
apply now takes an environment as an argument;

application of a compound procedure constructs a set of
delayed expressions; and application of a primitive procedure
constructs a set of actual values by evaluating any delayed
argument. We have to implement the procedures to delay and
force evaluation, but otherwise we have a very small set of
changes.

Slide 17.2.6
What else do we have to change? Since we have changed

apply (which we here call l-apply for lazy apply), we

need to change the use of that procedure in eval (which we

here call l-eval). But in fact most of the work is now in l-

apply. Here we call it with the actual value of the operator,

but just the expressions for the other arguments, plus the

environment.

So our change to l-eval is very simple. When we get to an

application, we pass the actual value of the operator (which
means we need to be sure to do the evaluation) to l-apply.

But notice that we just pass in the other expressions as tree structure, with no evaluation.
Notice that this is the only change to l-eval. All other expressions are still handled exactly as before.

Also notice that when apply takes in these arguments, it may further pass the delayed arguments along

unevaluated (if the application involves another compound expression). Only when apply reaches a primitive

application will it force the arguments to be evaluated.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.7
What else do we need? Notice that we have now made a
distinction between getting the actual value of expressions,
versus simply delaying the evaluation of an expression. We
need values for operators, and for primitive applications only.
But this means we now have two different kinds of values: the
actual value of the expression, versus a promise to get the value
when asked for it. We need to implement those two kinds of
values, which we do next.

Slide 17.2.8
First, to get the actual value of an expression with respect to an
environment, we would expect to see a use of l-eval. We

can see that inside of this procedure. But notice that evaluating
that expression might itself return a delayed object. If it is a
nested combination of procedures, for instance, evaluating the
first level may give us back something that is still a delayed
promise to get a value. So we will add one more piece. We will
add a procedure called force-it, which takes an

argument and ensures that it is fully evaluated, and not delayed.
Thus, actual-value of an expressions will evaluate

any delayed expression, and ensure that the returned value is
not delayed, but fully evaluated.

Slide 17.2.9
As we saw, we will use actual-value inside l
eval to get the value of the procedure. We do that because

we need to know whether the procedure is primitive or
compound, in order to keep unwrapping the substitution of
unevaluated arguments into the bodies of procedures.
We also need to use actual-value when a primitive

application requires an actual set of values. Thus, list-of-
arg-values should take a set of expressions and an

environment, and should recursively evaluate all of the
expressions in that environment. Note how we just construct a
list using recursive evaluation, but here using actual-value to ensure that evaluation of the expression

completely unwinds any delayed objects.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.10
On the other hand, if we are applying a compound procedure to
a set of arguments, we want to just take the argument
expressions and substitute them directly into the body. But we
need to label them as something that is a delayed evaluation.
List-of-delayed-args does exactly the opposite

of list-of-arg-values. It walks down the list of

expressions and glues a label onto each expression, creating a
promise for each expression to do the evaluation when required,
where the promise consists of the tree structure of the
expression and the environment in which to ultimately do the
evaluation, assembled together in some data structure.

Slide 17.2.11
Notice, these are the only changes we need to make to eval
and apply to implement lazy evaluation, so let's recap what

we have done. Apply of a primitive procedure gets the actual

values of the arguments by forcing delayed expressions.
Apply of a compound procedure delays the evaluation of all

other arguments. Eval simply evaluates the first

subexpression of an application to get the procedure, but passes
the rest of the arguments along as delayed, unevaluated objects.
These will get forced into evaluation when a primitive
application takes places.
All that is left is to implement the data abstraction for delayed objects and the operation of forcing such objects.

Slide 17.2.12
For historical reasons, we call one of these delayed things, one
of these promises to do an evaluation, a thunk. Abstractly, a
thunk is simply a promise to return a value when it is needed,
i.e. when it is forced. Thus, inside a thunk, we need to represent
the actual expression as tree structure, the environment that will
serve as the context for interpreting symbols within the
expression, and a label identifying this thing as a thunk.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.13
To actually implement this, we can just build this as a "tagged"
structure: a list with the label of a thunk, plus a pointer to the
tree structure of the expression, plus a pointer to the
environment.

Slide 17.2.14
With that in mind, we can now implement this idea. Delay
just constructs this tagged list. Remember that since exp is

just passed in as list structure from the parser, it is just glued
together into new list structure, without evaluation. As with any
data abstraction, we have a predicate for identifying a thunk,
and selectors for getting out the parts of the thunk, the
expression and the environment in which to evaluate the
expression.

Slide 17.2.15
The corresponding piece is that when given a thunk, we can
force it to be evaluated. Here, we can be careful. We will first
check to see if the object is a delayed thing. If it is not a thunk,
then we know that this is already reduced to a value, and we
simply pass it along. This is exactly why we put the label on the
object in the first place, allowing us to distinguish between tree
structure that is part of the data structure being manipulated and
tree structure that represents something waiting to be evaluated.
On the other hand, if this is a thunk, then we extract the parts of
the thunk (expression and environment), and then we do the
actual evaluation by applying actual-value (which we

know will force the evaluation of this expression). Notice as a consequence that if obj on first evaluation reduces

to another delayed thing, actual-value will continue to force it, until a value is returned not a delayed

object.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.2.16
So there are the changes. Very simple changes to our evaluator
have allowed us to build something that does lazy evaluation.
We made a small change to apply, we made a small change

to eval, we introduced one new kind of thing, a delayed

object or thunk, but that's it. Thus we have a dramatic change in
behavior based on a small change in the evaluator.

6.001 Notes: Section 17.3

Slide 17.3.1
So what have we accomplished to this point? We have
converted our standard evaluator, our applicative order
evaluator, into a normal order evaluator. And to do that we had
to make only a small number of changes in the evaluator itself.
However, we did need to introduce a couple of new things. The
primary one was this idea of a delayed object: the idea of taking
an expression, plus the environment in which it is to be
evaluated, and sticking them together into a promise, a thunk,
that says: "I am not going to evaluate myself now, but when
you ask me for my value, I will give it to you". We use that to
delay evaluation of any of the arguments to procedure
applications, until we get down to things that need to be printed or to applications of primitive procedures.

Slide 17.3.2
One consequence of using these delayed objects as part of our
lazy evaluation is that we end up doing, at least at present, some
extra work. If you go back to our earlier example, when we
compared normal order and applicative order using the foo
procedure, you will see that in lazy evaluation, if we used the
same argument multiple places inside a procedure body, we had
to re-evaluate it each time. If this is an expensive computation,
we could be wasting a lot of effort.
On the other hand, in applicative order evaluation, we evaluated
the argument once, and then simply used it, or referenced it as
part of the environment, inside the body of the procedure. So

can we trade this off? Is there some way of keeping track of values once we have forced a delayed object, in order
to avoid the cost of re-evaluation?

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.3.3
The answer is yes. The basic idea is that we will memoize a
thunk. This means that we will keep track, using a memo if you
like, of when we have actually done the work. Thus, we start
off with a thunk, a delayed expression or a promise to be
evaluated when asked to. When we actually force that thunk,
when we do the work to get the thunk's value, we will simply
remember it. We will keep track of that by putting a tag on it
that indicates that we have the value associated with a thunk.
Thus if the value is ever needed again, we can just return that
value, rather than recomputing it.

Slide 17.3.4
Remember how we have been representing thunks as a tagged
list with a label, an expression stored as tree structure and an
environment to use for context when evaluating the expression.
Given this representation for a thunk, what do we want to have
happen after we have done the evaluation?

Slide 17.3.5
We simply want to take the result, the value that comes from
that evaluation, and keep track of it, together with a label that
indicates I have already done the work. So concretely, we can
simply mutate the current thunk into an evaluated thunk, by
putting that tag on the front together with the result.

Slide 17.3.6
Notice that we used an important word in describing this. We
said we would mutate the thunk. That means we are going to
take this list structure and actually change its contents. Why?
Why not simply create a new object with the same information?
The reason is that if some other part of the evaluation is
pointing to this thunk, by mutating the thunk those things still
point to the same object. This way I don't need to keep track of
who needs this value, I have simply changed this value directly
without having to change anything else.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.3.7
How about implementing that idea? That is straightforward. We
take a thunk and add some aspects to it. We now have a thunk
that can be evaluated, so we need a predicate to check that. And
we will have a way of getting the value out of an evaluated
thunk, by extracting a part of the tagged list structure. This goes
hand-in-hand with the parts we had earlier for normal thunks.

Slide 17.3.8
You might expect that we should also have a constructor for an
evaluated thunk. It seems like we are building a data
abstraction, and one would normally expect a constructor to go
with the selector. But remember what we said: we are going to
mutate an existing structure, not create a new one. That means
we are really just modifying the components of a thunk directly.
Thus we won't have a specific constructor for an evaluated
thunk, rather we will rely on changing what happens to a thunk
when we force it.

Slide 17.3.9
Remember what force-it did. Given an object, it would

first check to see if that object was a thunk. If it were, it would
get the actual value of the expression part of the thunk with
respect to the environment part of the thunk. If it were not a
thunk, it would just return the object as the desired object. Now
we need to change things slightly.
If this object is a thunk, i.e. is appropriately tagged as a thunk,
we will again do the work to get the associated value of the
thunk expression with respect to the environment, using
actual-value. Now we will mutate the existing object.

We will change the first part of the object from the label
thunk to the label evaluated-thunk. We will change the next component of the object to hold the

result, replacing what used to be the expression. Finally, we will mutate the last part of the object to be the empty
list, that is, we will drop the pointer to the environment because we no longer need it. Thus we have mutated a list
of length 3 into a list of length 2, which now has the structure of an evaluated thunk.
What else do we need? If the object is itself an evaluated thunk, we will just return the value! We've already done
the work so we can just return it. And if the object is neither kind of thunk, we will just return the object directly as
the value. This gives us our memoized version of a thunk. This object only does the work once to evaluate a
delayed object, keeping track of the computed value for future reference.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.3.10
Are any other changes needed to convert our evaluator into a
lazy evaluator? Just a few. What have we had to change so far?
Our primary change was in apply, which now gets actual

values for arguments if using a primitive procedure, otherwise
it delays the evaluation of the argument expressions. In terms of
eval the change was in doing applications, in which we

simply passed down the argument subexpressions without
evaluation. The other changes were ways of getting the values
of arguments when needed.
The other change that we need is in one of our special forms, in
if. Think about what happens in an if expression. In order

to decide which branch to take, I need to get the actual value of the predicate. Thus within an if, I will get the

actual value of the predicate, but the other subexpressions I can pass along as thunks, relying on the primitive
applications to force these when needed.

Slide 17.3.11
But other special forms are fine. For example, in assignment the
value associated with a variable can be evaluated in a lazy
fashion. Until some procedure actually needs this new value for
this variable, the value can be stored as a thunk, a promise to
compute the value when needed.
This completes the conversion of our evaluator from applicative
order to normal order or lazy evaluation.

6.001 Notes: Section 17.4

Slide 17.4.1
One of the goals of this lecture was to show how we can change
the behavior of a language by changing the evaluator,
especially how small changes in the evaluator can have
dramatic consequences on the evaluation of expressions in the
language. In this lecture, we converted from applicative order to
normal order evaluation as an example.
But what are the tradeoffs inherent in such a switch? It turns out
that with lazy evaluation we have an interesting dilemma. On
the positive side, we only do work when we need an actual
value. This suggests that in principle we could devise very
efficient methods for computing things. On the negative side,
we are not always certain when an expression will be evaluated.
If we have a language with side effects, in which mutation takes place, this can be a serious issue. It can lead to
conceptual errors as well as programming errors, and can cause some serious difficulties. It may also be the case

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

that we evaluate the same expression more than once. Since we delay the evaluation, we don't know when it is
going to be evaluated, we may end up redoing work.

Slide 17.4.2
Some of this we can fix with memoization. It allows us to
evaluate an expression at most once and resolves this issue of
doing extra work. But it has the disadvantage that we don't have
control over it. What if we want evaluation on each use, what if
the evaluation of an expression involves mutation in which the
side effect is important, and it is not the value that is returned
but the effect that takes place that matters. In that case, we want
the expression evaluated each time, not memoized. As we have
built things so far, we don't have that ability.

Slide 17.4.3
This makes it sound like lazy evaluation is not a good idea. And
of course that is not the case. We really have a trade off here.
One way to approach this is to observe that if I am not going to
have any side effects in my language, then lazy evaluation is a
valuable tool. With memoization in place I can have efficient
implementations by only evaluating expressions as needed and
at most once.
But if I want to have side effects or mutations, then I have a
disadvantage. I don't know how to control when I get evaluation
to take place.
An alternative is to give the programmer direct control, letting
him/her specify whether an expression should be a thunk, or a
direct value. So how do we build this level of control into an evaluator?

Slide 17.4.4
So let's change our evaluator to let the programmer directly
specify, when they create a procedure, whether a variable
should be treated as a normal variable, as a lazy variable, or as a
lazy memo variable. Here is the form we will use.
We will now let lambdas have as their parameter lists,

either variables, or expressions that indicate both a variable
name and the kind of variable it should be. In the example
shown, we want a and c to be treated by the evaluator as

normal variables. When we apply the procedure, the arguments

associated with these variables should be evaluated before we

do the procedure application.

B is specified to be a lazy variable. That says that when an expression is passed in for this parameter, it should get

re-evaluated each time it is needed, but not evaluated until it is needed in a primitive application.

On the other hand, d should be a memoized lazy variable. That means that an expression passed in as part of an

application should be delayed until needed as part of a primitive application, but once evaluated, the value is saved

and reused on each subsequent evaluation.

This will allow us to distinguish between things that we want evaluated right at application time, things that we

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

want to delay evaluating but re-evaluate each time we need them, and things that we want to delay evaluating but
only evaluate once.

Slide 17.4.5
Thus we are now giving the programmer the ability to put
declarations on the variables or parameters of a procedure. This
suggests that one of the changes we will need to make to our
evaluator is to change the syntax, at least of a lambda
expression.

Slide 17.4.6
So remember what happens in our lazy evaluator. When we go
to apply a compound procedure, we evaluate the body of that
procedure in an extended environment. That extended
environment was created by taking the list of parameters of the
procedure, plus a list of delayed arguments, and glued them
together. Now we have to think a little more carefully about
what it means to look at the list of parameters.
In the full version of a lazy evaluator, list-of-
delayed-arguments, the thing that created the

arguments, would simply delay everything in the list. Here, we
want to walk down the parameter list at the same time we are

walking down the arguments, and decide for each parameter whether to evaluate or delay. So here is some structure
to do this.
We will need a selector for the next variable in the list of parameters, and a selector for the rest of the variables.
We will need a way of checking for each variable whether it is just a symbol (meaning I want direct evaluation of
the expression) or whether it has been declared to be a different type of variable. Thus declaration? will

tell me whether the variable is a special case or not.
To get the name of the variable, we will check: if the object is a list, then it is a declaration and I need to get the
second element of the list. If it is not a list, it must just be the symbol I need. For variables that are declared, I can
build tag-checking procedures to determine the type, as shown.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.4.7
So this will allow us to walk down the parameter list associated
with a procedure, checking each element in turn to find the
variable name, and any declaration that specifies how we want
to evaluate the value to be bound to that variable.

Slide 17.4.8
In terms of the values to be associated with variables, we now
have several different flavors. We have standard values
(numbers, symbols, etc.). We also have thunks, which we treat
as a delayed expression that gets evaluated each time it is
needed.

Slide 17.4.9
We will also have a memoized thunk, and this is a different
declaration. Here the idea is that when we first evaluate this
thunk, we are going to remember its value, and we remember it
in a particular structure ...

Slide 17.4.10
As we did earlier, we will mutate a thunk-memo structure

into an evaluated-thunk, keeping track of the result.

So when we actually force the evaluation of one of these
thunk-memos, we will mutate it into this new structure.

Notice what we are doing: we are making a distinction between
a thunk and a memoized thunk. This allows the

programmer to specify whether a thunk should always

remain as a delayed promise, to be re-evaluated each time the
value is needed; or whether it should keep track of it's value
after the first evaluation, and just return that value when

requested.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.4.11
Remember that in our full lazy evaluator, the key issue arose
when we went to apply a compound procedure. There we glued
together the parameters of the procedure with a list of delayed
arguments. In that case, we delayed each argument, storing that
promise in the environment, and proceeding to the evaluation of
the body of the procedure. Because we are now going to let the
programmer have control, we have to re-examine our
mechanism for delaying arguments. We need to make a small
change here.

Slide 17.4.12
Previously, delay-it would simply have taken in an

expression and an environment and converted the pair into a
thunk. Now, we need to pass into delay-it not on the

expression to be delayed, but the also the declaration (the part
of the parameter list that corresponds to this expression).
If that parameter is not a declaration, i.e. it is just a normal
variable, then we go ahead and get the value, right now, as we
would in normal Scheme.
If, however, the programmer has specified this variable to be
lazy, we will create a thunk, or one of these delayed evaluation
objects, exactly as we did in the lazy evaluator.

If the programmer has specified this variable to be memoized, we will similarly delay that evaluation, but with a
distinctive label to separate it from a normal thunk.

Thus, we are using the programmer's declarations to tell us how to handle evaluation of expressions to be bound to
parameters during a procedure application: do we evaluate now or delay, and if we delay do we want to keep track
of the value once we get it.

Slide 17.4.13
Similarly, because we now have different kinds of expressions
associated with variables, I need to change force-it, the

procedure intended in the previous version to force the
evaluation of any delayed object.
Now, we need to handle the wider range of possible
expressions. First, if the object to be forced into evaluation has
been labeled as a thunk, a delayed promise, then I get the

expression and the environment parts of the object, and force
the evaluation of the expression with respect to this
environment. I return that value to the caller, but notice that I
don't remember it. If some other caller asks for the value of this
expression, I will redo the work of forcing its evaluation.
If the object has been labeled as a memoized-thunk, I will similarly get the expression and environment

parts of the object, and force the evaluation of the expression with respect to the environment. But in this case, I
will mutate this structure into an evaluated-thunk, keeping track of this computed value. Remember

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

that I am mutating in place, so that any variable that points to this object will continue to point to it, so that it can

now access the computed value, without having to force the work.

If the object was a thunk but has already been evaluated, I can just extract and return the value.

Everything else just returns the value of the object.

Slide 17.4.14
With that infrastructure in place, I can now make the key
change. In this version of l-apply, I only want to delay

parameters that have been explicitly labeled as lazy or
memoized lazy. For lazy parameters, we should make a thunk.
For memoized lazy parameters, we should make a memoized
thunk. Those are both handled by our new version of delay-
it. And then when I go to apply a compound procedure, I

need to do the following

Slide 17.4.15
Applying a compound procedure means that I want to evaluate
the body of that procedure with respect to a new environment.
That environment I am going to get by extending the
procedure's environment with a new frame. But in that frame,
notice what we do. First, we get out the parameters of the
procedure. However, I know that this list is not just a list of
names, it may include declarations. So to extend the
environment, I need to get just the names, which I do by
mapping the selector down this list. Then, from the list of
parameters I create a set of delayed arguments, as before. This
means I take any declarations and the associated expressions
and environment, and use delay-it to create the right expressions. If there is no declaration, I evaluate the

expression and bind it to the variable. If there is a declaration, I create an appropriate delayed expression and bind
it to the variable.

Slide 17.4.16
Now I can use this entire infrastructure to create the actual list
of delayed arguments. I take the declarations, the list of
variables and their declared types, plus the list of expressions
(the arguments passed in) and I walk down those two lists in
unison, delaying each expression. Remember that delay-
it will use the declaration to decide which expressions to

delay, and how, and which expressions to evaluate. This now
allows the programmer to control when an expression to be
used as an argument in a procedure gets evaluated: at time of
application, or at time of primitive application; is it evaluated
and remembered, or simply re-evaluated each time it is needed.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 17.4.17
So what does this do for us? Now we have built in some
programmer control. By changing how an application deals
with its arguments, in terms of when to evaluate and what to
keep track of, we have enabled the programmer to specify what
he/she wants. When they create a lambda they have the

opportunity to specify their choice concerning which
parameters are evaluated under which rules.
The key issue is how, given this idea of lazy evaluation, we are
able to easily change the behavior of the language. Some small
syntactic changes in how we specify parameters, and some
changes in the manipulation of evaluation gives us a very
different behavior.

Slide 17.4.18
To summarize, here are the key points about changes in
evaluation based on our choice of evaluation model. The
primary issue is how we have allowed a programmer to control
evaluation behavior. We can control the order in which things
are evaluated, from applicative order, to normal order, to
compromises in between.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

