
1

1/33

Evaluation and universal machines

• What is the role of evaluation in defining a language?
• How can we use evaluation to design a language?

2/33

The Eval/Apply Cycle

• Eval and Apply execute a cycle that unwinds our 
abstractions

• Reduces to simple applications of built in procedure to 
primitive data structures

• Key:
• Evaluator determines meaning of programs (and hence 

our language)
• Evaluator is just another program!!

Eval
Exp & env

Apply
Proc & args

3/33

Examining the role of Eval

• From perspective of a language designer
• From perspective of a theoretician

4/33

Eval from perspective of language designer

• Applicative order
• Dynamic vs. lexical scoping
• Lazy evaluation

• Full normal order
• By specifying arguments
• Just for pairs

• Decoupling analysis from evaluation

5/33

static analysis: work done before execution

• straight interpreter

• advanced interpreter
or compiler

interpreterexpression

environment

value

static
analysis

expr

environment

valueexecution

6/33

Reasons to do static analysis

• Improve execution performance
• avoid repeating work if expression contains loops
• simplify execution engine

• Catch common mistakes early
• garbled expression
• operand of incorrect type
• wrong number of operands to procedure

• Prove properties of program
• will be fast enough, won't run out of memory, etc.
• significant current research topic



2

7/33

Eval is expensive

(eval ' (define (fact n) 

(if (= n 1) 1 (* n (fact (- n 1))))) GE)

==> undef

... (eval ' (fact 4) GE) ...

... (eval ' (= n 1) E1) ...

which executes the case statement in eval four times

... (eval ' (fact 3) E1) ...

... (eval ' (= n 1) E2) ...

which executes the case statement in eval four times

• The analyze evaluator avoids this cost
8/33

Summary of part 1

• static analysis
• work done before execution
• performance
• catch mistakes
• prove program properties

• analyze evaluator
• static analysis: eliminate execution cost of eval

9/33

Strategy of the analyze evaluator

analyzeexpr

environment

valueexecution

Execution procedure  
a scheme procedure
Env → anytype

EP

analyze :  expression → (Env → anytype)

(define (a-eval exp env)
((analyze exp) env))

10/33

Example of analyze: variable name lookup

analyzepi

environment
pi 3.14

3.14execution

p: env
b: (lookup name env)

name pi

scheme's
environment

evaluator
data struct

foo

foo

11/33

Implementing variable name lookup

(define (analyze exp)

(cond

((number? exp)   (analyze-number exp))

((variable? exp) (analyze-variable exp))

...

))

(define (analyze-variable exp)

(lambda (env) (lookup-variable exp env) ))

(black: analysis phase) (blue: execution phase)

12/33

Implementing number analysis

• Implementing  analyze-number is also easy

(define (analyze-number exp)
(lambda (env) exp ))

(black: analysis phase) (blue: execution phase)



3

13/33

Summary of part 2

• output of analyze is an execution procedure

• given an environment
• produces value of expression

• within analyze

• execution phase code appears inside 
(lambda (env) ...)

• all other code runs during analysis phase

14/33

Subexpressions (hardest concept today)

(analyze ' (if (= n 1) 1 (* n (...))) )

• analysis phase:
(analyze ' (= n 1) )    ==> pproc
(analyze 1)           ==> cproc
(analyze ' (* n (...)) )==> aproc

• execution phase
(pproc env) ==> #t or #f  (depending on n)
if #t, (cproc env)
if #f, (aproc env)

15/33

Implementation of analyze-if

(define (analyze-if exp)

(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))

(aproc (analyze (if-alternative exp))))

(lambda (env)

(if (true? (pproc env))

(cproc env)

(aproc env)) )))

black: analysis phase blue: execution phase

16/33

Visualization of analyze-if

analyze

(if (= n 1)
1
(* n (...)))

p: env
b: (if (true? (pproc env))

(cproc env)
(aproc env))

pproc ...
cproc
aproc ...

p: env
b: exp

exp    1

17/33

Your turn

• Assume the following procedures for definitions like
(define x (+ y 1))

(definition-variable exp) x

(definition-value exp) (+ y 1)

(define-variable! name value env) add binding

to env

• Implement analyze-definition

• The only execution-phase work is define-variable!

• The definition-value might be an arbitrary expression

18/33

Implementation of analyze-definition

(define (analyze-definition exp)

(let ((var (definition-variable exp))

(vproc (analyze (definition-value exp))))

(lambda (env)

(define-variable! var (vproc env) env) )))

black: analysis phase blue: execution phase



4

19/33

Summary of part 3

• Within analyze

• recursively call analyze on subexpressions

• create an execution procedure which stores the EPs for 
subexpressions as local state

20/33

Implementing lambda

• Body stored in double bubble is an execution procedure

• old make-procedure
list<symbol>, expression, Env → Procedure

• new make-procedure
list<symbol>, (Env->anytype), Env → Procedure

(define (analyze-lambda exp)

(let ((vars (lambda-parameters exp))

(bproc (analyze (lambda-body exp))))

(lambda (env) 

(make-procedure vars bproc env) )))

21/33

Implementing apply:  execution phase

(define (execute-application proc args)

(cond

((primitive-procedure? proc) 

...) 

((compound-procedure? proc)

( (procedure-body proc)

(extend-environment (parameters proc)

args

(environment proc))))

(else ...)))

22/33

Implementing apply: analysis phase

(define (analyze-application exp)

(let ((fproc (analyze (operator exp)))

(aprocs (map analyze (operands exp))))

(lambda (env)

(execute-application 

(fproc env)

(map (lambda (aproc) (aproc env))

aprocs)) )))

23/33

Summary of part 4

• In the analyze evaluator, 
• double bubble stores execution procedure, not 

expression

24/33

What is Eval really?

• Suppose you were a circuit designer
• Given a circuit diagram, you could transform it into an electric

signal encoding the layout of the diagram
• Now suppose you wanted to build a circuit that could take 

any such signal as input (any other circuit) and could then 
reconfigure itself to simulate that input circuit

• What would this general circuit look like???
• Suppose instead you describe a circuit as a program

• Can you build a program that takes any program as input 
and reconfigures itself to simulate that input program?

• Sure – that’s just EVAL!! – it’s a UNIVERSAL MACHINE



5

25/33

It wasn’t always this obvious

• “If it should turn out that the basic logics of a machine 
designed for the numerical solution of differential equations 
coincide with the logics of a machine intended to make bills 
for a department store, I would regard this as the most 
amazing coincidence that I have ever encountered”

Howard Aiken, writing in 1956 (designer of the Mark I 
“Electronic Brain”, developed jointly by IBM and Harvard 
starting in 1939)

26/33

Why a Universal Machine?

• If EVAL can simulate any machine, and if EVAL is itself a 
description of a machine, then EVAL can simulate itself

• This was our example of meval
• In fact, EVAL can simulate an evaluator for any other 

language
• Just need to specify syntax, rules of evaluation

• An evaluator for any language can simulate any other 
language

• Hence there is a general notion of computability – idea 
that a process can be computed independent of what 
language we are using, and that anything computable in 
one language is computable in any other language

27/33

Turing’s insight

• Alan Mathison Turing
• 1912-1954

28/33

Turing’s insight
• Was fascinated by Godel’s incompleteness results in decidability (1933)

• In any axiomatic mathematical system there are propositions that
cannot be proved or disproved within the axioms of the system 

• In particular the consistency of the axioms cannot be proved. 
• Led Turing to investigate Hilbert’s Entscheidungsproblem

• Given a mathematical proposition could one find an algorithm which 
would decide if the proposition was true of false?

• For many propositions it was easy to find such an algorithm. 
• The real difficulty arose in proving that for certain propositions no such 

algorithm existed. 

• In general – Is there some fixed definite process which, in principle, 
can answer any mathematical question?

• E.g., Suppose want to prove some theorem in geometry

– Consider all proofs from axioms in 1 step
– … in 2 steps ….

29/33

Turing’s insight

• Turing proposed a theoretical model of a simple kind of 
machine (now called a Turing machine) and argued that 
any “effective process” can be carried out by such a 
machine

• Each machine can be characterized by its program
• Programs can be coded and used as input to a machine
• Showed how to code a universal machine
• Wrote the first EVAL!

30/33

The halting problem

• If there is a problem that the universal machine can’t solve, 
then no machine can solve, and hence no effective process

• Make list of all possible programs (all machines with 1 input)
• Encode all their possible inputs as integers
• List their outputs for all possible inputs (as integer, error or

loops forever)
• Define f(n) = output of machine n on input n, plus 1 if output is 

a number
• Define f(n) = 0 if machine n on input n is error or loops
• But f can’t be computed by any program in the list!!
• Yet we just described process for computing f??
• Bug is that can’t tell if a machine will always halt and produce

an answer



6

31/33

The Halting theorem

• Halting problem: Take as inputs the description of a 
machine M and a number n, and determine whether or not 
M will halt and produce an answer when given n as an 
input

• Halting theorem (Turing): There is no way to write a 
program (for any computer, in any language) that solves 
the halting problem.

32/33

Turing’s history

• Published this work as a student
• Got exactly two requests for reprints
• One from Alonzo Church (professor of logic at 

Princeton)
– Had his own formalism for notion of an effective 

procedure, called the lambda calculus
• Completed Ph.D. with Church, proving Church-Turing 

Thesis:
• Any procedure that could reasonably be considered to 

be an effective procedure can be carried out by a 
universal machine (and therefore by any universal 
machine)

33/33

Turing’s history

• Worked as code breaker during WWII

• Key person in Ultra project, breaking German’s Enigma coding machine

• Designed and built the Bombe, machine for breaking messages from 
German Airforce

• Designed statistical methods for breaking messages from German Navy

• Spent considerable time determining counter measures for providing 
alternative sources of information so Germans wouldn’t know Enigma 
broken

• Designed general-purpose digital computer based on this work

• Turing test: argued that intelligence can be described by an effective 
procedure – foundation for AI

• World class marathoner – fifth in Olympic qualifying (2:46:03 – 10 minutes off 
Olympic pace)

• Working on computational biology – how nature “computes” biological forms.
• His death


