
1

1

6.001 SICP
Computability

• What we've seen...

• Deep question #1:
• Does every expression stand for a value?

• Deep question #2:
• Are there things we can't compute?

• Deep question #3:
• Where does our computational power

(of recursion) come from?
2

(1) Abstraction

• Elements of a Language (or Engineering Design)
• Primitives, means of combination, means of abstraction

• Procedural Abstraction:
• Lambda – captures common patterns and

"how to" knowledge

• Functional programming & substitution model

• Conventional interfaces:
• list-oriented programming
• higher order procedures

3

(2) Data, State and Objects

• Data Abstraction
• Primitive, Compound, & Symbolic Data
• Contracts, Abstract Data Types
• Selectors, constructors, operators, ...

• Mutation: need for environment model

• Managing complexity
• modularity
• data directed programming
• object oriented programming

4

(3) Language Design and Implementation

• Evaluation – meta-circular evaluator
• eval & apply

• Language extensions & design
• lazy evaluation
• dynamic scoping

• Register machines
• ec-eval and universal machines
• compilation
• list structured data and memory management

5

Deep Question #1

Does every expression stand for a value?

6

Some Simple Procedures

• Consider the following procedures
(define (return-seven) (+ 3 4))
(define (loop-forever) (loop-forever))

• So
(return-seven)
� 7

(loop-forever)

� [never returns!]

• Expression (loop-forever) does not stand for a value;
not well defined.

2

7

Deep Question #2

Are there well-defined things that
cannot be computed?

8

Mysteries of Infinity: Countability

• Two sets of numbers (or other objects) are said to have the
same cardinality (or size) if there is a one-to-one mapping
between them. This means each element in the first set
matches to exactly one element in the second set, and vice
versa.

• Any set of same cardinality as the integers is called
countable.

• {integers} same size as {even integers}: n� 2n

• {integers} same size as {squares}: n�n2

• {integers} same size as {rational numbers}

9

Countable – rational numbers

• As many integers as rational numbers (no more, no less).
Proof:

1 2 3 4 5 6 7 …

1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 …

2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 …

3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 …

4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 …

5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 …

• Mapping between the set of rationals and set of integers –
match integers to rationals starting from 1 as move along
line

10

Uncountable – real numbers

• The set of real numbers between 0 and 1 is uncountable,
i.e. there are more of them than there are integers:

• Proof: Represent a real number by its decimal expansion
(may require an infinite number of digits), e.g. 0.49373

• Assume there are a countable number of such numbers.
Then can arbitrarily number them, as in this table:

#1 0. 4 9 3 7 3 0 0 0 ...

#2 0. 3 3 3 3 3 3 3 3 ...

#3 0. 5 8 7 5 3 2 1 4 ...

• Pick a new number by adding 1 (modulo 10) to every
element on the diagonal, e.g. 0.437... becomes 0.548…
This number cannot be in the list! The assumption of
countability is false, and there are more reals than integers

11

There are more functions than programs

• There are a countable number of procedures: e.g. can write
every program in a binary (integer) form, 100110100110

• Assume there are a countable number of predicate
functions, i.e. mappings from an integer arg to the value 0
or 1. Then we can arbitrarily number these functions:

#1 0 1 0 1 1 0 …

#2 1 1 0 1 0 1 …

#3 0 0 1 0 1 0 …

• Use Cantor Diagonalization again! Define a new predicate
function by complementing the diagonals. By construction
this predicate cannot be in the list (of all integers, of all
programs). Thus there are more predicate functions than
there are procedures.

12

halts?

• Even simple procedures can cause deep difficulties.
Suppose we wanted to check procedures before running
them to catch accidental infinite loops.

• Assume a procedure halts? exists:
(halts? p)

� #t if (p) terminates
� #f if (p) does not terminate

•halts? is well specified – has a clear value for its inputs
(halts? return-seven) � #t
(halts? loop-forever) � #f

Halperin, Kaiser, and Knight, "Concrete Abstractions," p. 114, ITP 1999.

3

13

The Halting Theorem:
Procedure halts? cannot exist. Too bad!

• Proof (informal): Assume halts? exists as specified.

(define (contradict-halts)
(if (halts? contradict-halts)

(loop-forever)
#t))

(contradict-halts)

� ??????

• Wow! If contradict-halts halts, then it loops forever.
• Contradiction!

Assumption that halts? exists must be wrong.
14

Deep Question #3

Where does the power of recursion come from?

15

From Whence Recursion?

• Perhaps the ability comes from the ability to DEFINE a
procedure and call that procedure from within itself?

• Example: the infinite loop as the purest or simplest
invocation of recursion:

(define (loop) (loop))

• Can we generate recursion without DEFINE – i.e. is
something other than the power to name at the heart of
recursion?

16

Infinite Recursion without Define

• We have notion of lambda, which abstracts out the pattern
of computation and parameterizes that computation.
Perhaps try:

((lambda (loop) (loop))

(lambda (loop) (loop)))

• Not quite: problem is that loop requires one argument, and
the first application is okay, but the second one isn't:

�((lambda (loop) (loop)) ____) ; missing arg

17

• Better is
((λλλλ(h) (h h)) ; an anonymous infinite loop!
(λλλλ(h) (h h)))

• Run the substitution model:
((λλλλ(h) (h h))
(λλλλ(h) (h h)))

= (H H)
�(H H)

�(H H)
...

• Can generate infinite recursion with only lambda & apply

Infinite Recursion without Define

H (shorthand)

18

Harnessing recursion

• So lambda (not naming) gives us recursion. But do we still
need the power to name (define) in order to do anything
practical or useful?

• For example, computing factorials:

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

• Can we compute factorials without explicitly "naming" such
a procedure?

4

19

((λλλλ(h) (h h)) ; our anonymous infinite loop
(λλλλ(h) (h h)))

• We'd like to do something each time we recurse:

((λλλλ(h) (f (h h)))

(λλλλ(h) (f (h h))))
= (Q Q)

Harnessing our anonymous recursion

Q (shorthand)

� (f (Q Q))
� (f (f (Q Q)))
� (f (f (f ... (f (Q Q))..)

• So our first step in harnessing recursion results in infinite
recursion... but at least it generates the "stack up" of f as
we expect in recursion

20

• We need to subdue the infinite recursion – how to
prevent (Q Q) from spinning out of control?

((λλλλ(h) (λλλλ(x) ((f (h h)) x)))

(λλλλ(h) (λλλλ(x) ((f (h h)) x))))

= (D D)

�(λλλλ(x) ((f (D D)) x))

�

How do we stop the recursion?

p: x
b: ((f (D D)) x)

• So (D D) results in something very finite – a procedure!
• That procedure object has the germ or seed (D D) inside

it – the potential for further recursion!

21

(Q Q)

� (f (f (f ... (f (Q Q))..)

(D D)

� (λλλλ(x) ((f (D D)) x))

�

Compare

p: x
b: ((f (D D)) x)

• (Q Q) is uncontrolled by
f; it evals to itself by itself

• (D D) temporarily halts the recursion and gives us
mechanism to control that recursion:

1. trigger proc body by applying it to number

2. Let f decide what to do – call other procedures
22

• In our funky recursive form (D D), f is a free variable:

((λλλλ(h) (λλλλ(x) ((f (h h)) x)))

(λλλλ(h) (λλλλ(x) ((f (h h)) x))))

= (D D)

• Can clean this up: formally parameterize what we have so
it can take f as an argument:

(λλλλ(f) ((λλλλ(h) (λλλλ(x) ((f (h h)) x)))

(λλλλ(h) (λλλλ(x) ((f (h h)) x)))))

= Y

Parameterize (capture f)

23

(λλλλ(f) ((λλλλ(h) (λλλλ(x) ((f (h h)) x)))
(λλλλ(h) (λλλλ(x) ((f (h h)) x)))))

= Y

• So
(Y F) = (D D)

�

as before, but now f is bound to some form F. When we
use the Y combinator on a procedure F, we get the
controlled recursive capability of (D D) we saw earlier.

The Y Combinator

p: x
b: ((F (D D)) x)

24

(Y F) = (D D)
�

• Want to design F so that we control the recursion. What
form should F take?

• When we feed (Y F) a number, what happens?
((Y F) #)

� (#)

� ((F) #)

How to Design F to Work with Y?

p: x
b: ((F (D D)) x)

p: x
b: ((F (D D)) x)

1. F should take a proc

2. (F proc) should eval to a
procedure that takes a
number

p: x
b: ((F (D D)) x)

5

25

� ((F) #)

Implication of 2: F Can End the Recursion

p: x
b: ((F (D D)) x)

F = (λλλλ(proc)
(λλλλ(n)
...))

• Can use this to complete a computation,
depending on value of n:

F = (λλλλ(proc)
(λλλλ(n)
(if (= n 0)

1
...))) Let's try it!

26

F = (λλλλ(proc)
(λλλλ(n) (if (= n 0) 1 ...)))

So
((F) 0)

� ((λλλλ(n) (if (= n 0) 1 ...)) 0)

� 1

• If we write F to bottom out for some values of n,
we can implement a base case!

Example: An F That Terminates a Recursion

p: x
b: ((F (D D)) x)

27

• The more complicated (confusing) issue is how to arrange
for F to take a proc of the form we need:

We need F to conform to:
((F) 0)

• Imagine that F uses this proc somewhere inside itself
F = (λλλλ(proc)

(λλλλ(n)
(if (= n 0) 1 ... (proc #) ...)))

= (λλλλ(proc)
(λλλλ(n)
(if (= n 0) 1 ... (#) ...)))

Implication of 1: F Should have Proc as Arg

p: x
b: ((F (D D)) x)

p: x
b: ((F (D D)) x) 28

• Question is: how do we appropriately use proc inside F?
• Well, when we use proc, what happens?
(#)

� ((F (D D)) #)
� ((F) #)

� ((λλλλ(n) (if (= n 0) 1 ...)) #)
� (if (= # 0) 1 ...)

Good! We get the eval of the inner body of F with n=#

Implication of 1: F Should have Proc as Arg

p: x
b: ((F (D D)) x)

p: x
b: ((F (D D)) x)

29

• Let's repeat that:
(proc #) -- when called inside the body of F

� (#)

� is just the inner body of F with n = #, and proc =

• So consider
F = (λλλλ(proc)

(λλλλ(n)
(if (= n 0)

1
(* n (proc (- n 1))))))

Implication of 1: F Should have Proc as Arg

p: x
b: ((F (D D)) x)

p: x
b: ((F (D D)) x)

30

• Consider our procedure
F = (λλλλ(proc)

(λλλλ(n)
(if (= n 0)

1
(* n (proc (- n 1))))))

• This is pretty wild! It requires a very complicated form for
proc in order for everything to work recursively as desired.

• How do we get this complicated proc? Y makes it for us!

(Y F) = (D D) => = proc

So What is proc?

p: x
b: ((F (D D)) x)

6

31

Putting it all together

((Y F) 10) =

(((λλλλ(f) ((λλλλ(h) (λλλλ(x) ((f (h h)) x)))
(λλλλ(h) (λλλλ(x) ((f (h h)) x)))))

(λλλλ(fact)
(λλλλ(n)
(if (= n 0)

1
(* n (fact (- n 1)))))))

10)

� (* 10 (* ... (* 3 (* 2 (* 1 1)))
� 3628800

No define – only
lambda and the power

of Y combinator!

32

Y Combinator: The Essence of Recursion

((Y F) x) = ((D D) x) = ((F (Y F)) x)

The power of controlled recursion!

(λλλλ(f) ((λλλλ(h) (λλλλ(x) ((f (h h)) x)))

(λλλλ(h) (λλλλ(x) ((f (h h)) x)))))

33

The Power and Its Limits

• λ λ λ λ empowers you to capture knowledge

• Y empowers you to reach toward the infinite –
to control infinite recursion one step at a time

• But there are limits – remember the halting theorem!

34

