
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 3.1 

Slide 3.1.1 
In this lecture, we are going to put together the basic pieces of 
Scheme that we introduced in the previous lecture, in order to 
start capturing computational processes inside procedures. To 
do this, we will introduce a model of computation, called the 
substitution model. We will show how that model helps us 
relate the choices we make in designing a procedure to the 
actual process of evaluation that will occur when we use that 
procedure. 
Thus we will first look at an example of the substitution model, 
to make sure you understand its mechanics, and then we will 
use to that examine two different approaches to creating 
procedures. 

Slide 3.1.2 
Now that we have the ability to create procedures and use them, 
we need some way of figuring out what happens during the 
evolution of a procedure application. For that we have 
something called the substitution model. You've actually seen 
this, but we just didn't call it that, and now we are going to 
make it quite explicit. 
The role of the substitution model is to provide us with a means 
of determining how an expression evolves. In examining the 
substitution model, we stress that this is not a perfect model of 
what goes on inside the computer. In fact, later in the term we 
will see a much more detailed and accurate model of 

computation, but this model suffices for our purposes. Indeed, 
we don't really care about using the substitution model to figure out the actual value of an expression. We can use 
the computer to do that. Rather, we want to use the substitution model to understand the process of evaluation, so 
that we can use that understanding to reason about choices in designing procedures. Given that understanding, we 
can work backwards, using a desired pattern of evaluation to help us design the correct procedure to generate that 
evaluation pattern. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.1.3 
So here are the rules for the substitution model. Given an 
expression, we want to determine its value. If the expression is 
a simple expression there are several possibilities. If it is a self-
evaluating expression, like a number, we just return that value. 
If the expression is a name (something we created with a define 
expression) then we replace the name with the corresponding 
value associated with it. 
If the expression is a special form, there are also several 
possibilities. If the expression is a lambda then we replace the 
expression with some representation of the actual procedure. If 
the expression is some other special form (such as an if 
expression) then we follow specific rules for evaluating the 
subexpressions of that special form. 
Otherwise the expression is a compound expression (one of those expressions nested in parentheses that contains 
several subexpressions). Here we apply exactly the same set of rules to each of the subexpressions of the 
compound expression, in some arbitrary order. We then look at the value of the first subexpression. If it is a 
primitive procedure (one of the built-in procedures, like * or +) then we just apply that procedure to the values of 
the other expressions. On the other hand, if the value of the first subexpression is a compound procedure 
(something we created by evaluating a lambda expression) then we substitute the value of each subsequent 
subexpression for the corresponding procedure parameter in the body of the procedure. We replace the entire 
expression with this instantiated body, and repeat the process. 

Slide 3.1.4 
So here is a simple example. Suppose we have defined square 
to be the obvious procedure that multiplies a value by itself. 
Now, let's use the substitution model to trace out the evolution 
of applying that procedure. 
The substitution model says that to trace the evaluation of 
(square 4), we first determine that this is a compound 
expression. Since it is, we evaluate each of the subexpressions 
using the same rules. Thus, the first subexpression, square, is 
just a name, and we look up its value, getting back the 
procedure we created when we evaluated the lambda. The 
second subexpression is just a number, so that is its value. Now 

the rule says to substitute 4 everywhere we see the formal 
parameter x in the body of the procedure and replace the original expression with this instantiated body expression, 
as shown. 
This reduces the evaluation of (square 4) to the evaluation of the expression (* 4 4). This is also a compound 
expression, so again we get the values of the subexpressions. In this case, the application is of a primitive 
procedure, so we simply apply it to reduce the expression to its final value, 16. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.1.5 
Here is a more detailed example. First, let's create two 
procedures. These expressions will each generate a procedure, 
through the lambda expressions, and the defines will then 
associate a name with each of them. Thus, in our environment, 
we have pairings of square and average to the associated 
procedure objects, each with its own parameter list and body. 

Slide 3.1.6 
Here is an example using these procedures. To evaluate this 
first expression using the substitution model, I first need to get 
the values of the sub-expressions. The value of average I get by 
looking this name up in the environment, giving me the 
associated procedure object. The value of 5 is easy. The last sub-
expression is itself a combination, so I recursively apply the 
rules. By the same reasoning I get the procedure associated with 
square and the value 3, then substitute 3 into the body of square 
for x. This reduces to another combination, which I can 
recognize is an application of a primitive procedure, so this 
reduces to the number 9. Thus the recursive application of the 

substitution model yields a simpler combination. 
Note the format here. I first evaluate the sub-expressions, then substitute and apply the procedure. This is called an 
applicative order evaluation model. 

Slide 3.1.7 
Notice in particular that under this model I need to get the value 
of the operands first, which caused me to evaluate that interior 
compound expression before I got around to applying average. 
Once I have simple values, I can continue the substitution. In 
this case, I use the body of the procedure associated with 
average, now substituting 5 and 9 for x and y in that body. 
Note that there is no confusion about which x I am referring to, 
it's the one in the procedure associated with average, not the 
one in square. 
As before, I substitute into the body of this procedure, and then 
continue. I recursively apply the rules to each subexpression. In 
the case of a compound expression, I must reduce this to a 
simpler value before I can continue with the rest of the expression. Also note that when the application involves a 
primitive procedure, I just do the associated operation, eventually reducing this to the final answer. 
The key idea is to see how this notion of substitution lets us trace out the evolution of an expression's evaluation, 
reducing an application of a procedure to the evaluation of a simpler expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 3.2 

Slide 3.2.1 
Now let's look at a little less trivial example. Suppose I want to 
compute factorial of n, which is defined as the product of n by 
n-1 and so on down to 1. Note that I am assuming that n is an 
integer and is greater than or equal to 1. 

Slide 3.2.2 
So how do I create a procedure to compute factorial of n? Well 
I need to think carefully here, since my choice in designing this 
procedure will impact the evolution of the process when I use 
it. 
One way to look at factorial is to group the computation into 
multiplying n by all the other multiplications, but I can 
recognize that this latter computation is just factorial of n-1. 
So notice what this does, it reduces a computation to a simpler 
operation, multiplication, and a simpler version of the same 
problem, in this case factorial of a smaller number. So I have 
reduced one version of a problem to a simpler version of the 
same problem, plus some simple operations. This is a very 

common pattern that we are going to use a lot in designing procedures. 

Slide 3.2.3 
In fact, given this common pattern, we can write a procedure to 
capture this idea. Here it is. The first part says to give the name 
fact to the procedure created by the lambda, which has a single 
argument n and a particular body. Now, what does the lambda 
say to do? It has two different parts, which we need to look at 
carefully. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.2.4 
First of all, it has a new kind of expression in the interior, the =. 
This is an example of a predicate, a procedure that takes some 
arguments and returns either true or false, in this case based on 
the test for numerical equality. 

Slide 3.2.5 
The more interesting part is the body of the lambda, and it is a 
new special form called an if. Because this is a special form, it 
means that evaluation does not follow the normal rules for 
combinations. If's are used to control the order of evaluation, 
and contain three pieces. 

Slide 3.2.6 
Its first subexpression we call a predicate. 

Slide 3.2.7 
Its second subexpression we call a consequent ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.2.8 
... and its third subexpression we call an alternative. Now here 
is why an if is a special form. An if expression first evaluates its 
predicate, using the same set of rules recursively on this 
expression. It does this before it ever looks at either of the two 
other expressions. Now, if the predicate evaluates to a true 
value, then the if expression takes the consequent, and evaluates 
it, returning that value as the value of the overall if expression. 
On the other hand, if the predicate evaluates to a false value, 
then the if expression takes the alternative expression, evaluates 
it, and returns that value. Notice that only one of the consequent 
and alternative expressions is evaluated during an if. 
In the case of our fact procedure, we can now see how the 

evaluation will proceed. When we apply fact to some argument, we first test to see if that value is 1. The if 
expression does this by first evaluating the predicate, before ever considering the other expressions, thus changing 
the order of evaluation. If the predicate is true, then we simply return the value 1. If it is false, then we will 
evaluate the last expression with appropriate substitution, thus unwinding factorial of n into the multiplication of 
the value of n by the result of evaluating factorial of n-1. 

Slide 3.2.9 
Here is a tracing of the substitution model in action. To 
evaluate factorial of 3, we substitute into the body of fact, 
leading to the next expression. The if first evaluates the 
predicate, leading to the next expression. Since the predicate's 
value is false, the entire if expression is replaced by the 
alternative, with appropriate substitutions. 
To evaluate this expression we need to get the values of the 
subexpressions, so this entire expression reduces to a 
multiplication of 3 by the value of (fact 2). Notice how this has 
unwound the computation into a particular form, a deferred 
multiplication and a recursive call to a simpler version of the 
same problem. 
This process repeats, using the if to unwind another level of the computation, and this continues, just using the 
substitution model rules, until finally the predicate is true. In this case, we are left with an expression just involving 
primitives, and we can complete the multiplications, thus reducing the computation to a simple answer. 
Note the form shown in red, in which an expression is reduced to this pattern of a simpler operation and a simpler 
version of the same problem. This unwrapping continues until we are left with a nested expression whose 
innermost subexpression only involves simple expressions and operations, at which point the deferred operations 
are evaluated. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.2.10 
That means that fact gives rise to what we call a recursive 
process. In the substitution model we can see that this is 
characterized by a set of deferred operations, in which the 
multiplication is deferred while we go off to get the sub-
computation of the simpler version of fact. Once we get to a 
simple case, we can start accumulating those stacked up 
operations. We will come back to this idea next time. 

6.001 Notes: Section 3.3 

Slide 3.3.1 
Now that we have seen our first more interesting procedure, 
fact, let's step back and generalize the ideas we used to capture 
this computation in a procedure. 
What are the general steps that we use in creating a recursive 
procedure like this? We have three stages: as shown here. 
The first stage is called wishful thinking. The idea is as 
follows. If I want to create a solution to some problem, I first 
assume that I have available a procedure that will solve the 
problem, but only for versions of the problem smaller than the 
current one. In the case of factorial, I assume (wishfully) that I 
can solve factorial for problems of size smaller than n. 

Slide 3.3.2 
Given that assumption, the second stage proceeds to design a 
solution to the problem. In particular, I can use the existence of 
a solution to the smaller sized problem, plus a set of simple 
operations, to design the solution to the larger sized problem. 
We saw this with factorial, where we combined the solution to 
a smaller version of factorial, plus a multiplication, to create the 
solution to the full version of factorial. 
Notice that the second step here requires some ingenuity. One 
should be careful to think through this strategy, before 
beginning to code up a solution. In the case of factorial, we saw 
how we did this decomposition into a multiplication and a 

smaller version of factorial. 
With this, we can build a first version of the procedure as shown at the bottom of the slide. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.3.3 
Of course you already know that this won't quite work, but let's 
think about why. If we apply that version of fact to some 
argument, it will keep unwinding the application of factorial 
into a multiplication and a smaller version of factorial. But 
before we can compute that multiplication, we have to get the 
value of the smaller version of factorial, and that will continue 
to unwind to another version, ad infinitum. 
The problem is that I didn't use my third step; I didn't consider 
the smallest sized problem that I can solve directly, without 
using wishful thinking. In the case of factorial, that is just 
knowing that factorial of 1 is just 1. Once I find that smallest 
sized problem, I can control the unwinding of the computation, 
by checking for that case and doing the direct computation when appropriate. In this way, I will terminate the 
recursive unwinding of the computation and accumulate all the deferred operations. 

Slide 3.3.4 
This in fact is a very common form, a common pattern for a 
recursive algorithm that has a test, a base case and a recursive 
case. The if controls the order of evaluation to decide whether 
we have the base case or the recursive case. The recursive case 
controls the unwinding of the computation, doing so until we 
reach the base case. 

Slide 3.3.5 
To summarize, we have now seen how to design recursive 
algorithms, by using this idea of wishful thinking to separate 
the problem into a simpler version of the same problem, do that 
decomposition and identify the smallest version of the problem 
that will stop the unwinding of the computation into simpler 
versions of the same problem. As a consequence, algorithms 
associated with this kind of approach have a test, a base case, 
and a recursive case to control the order of evaluation in order 
to unwind the computation into simpler versions of the same 
problem. 

6.001 Notes: Section 3.4




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.1 
So we have introduced recursive procedures, and we have now 
seen an example of building a recursive procedure to implement 
factorial. Now, let's look at a different kind of procedure, an 
iterative procedure for computing factorial. In doing this, we 
are going to see how we can develop procedures with different 
evolutions that compute the same basic computation. 

Slide 3.4.2 
To set the stage for this, here is our factorial procedure from 
last time. Remember that this was a nice little procedure that 
first checked to see if we were in the base case, and if we were, 
returned the answer 1. If we were not, the procedure reduced 
the problem to multiplying n by a recursive call to factorial of 
n-1. One of the properties of this procedure was that it held a 
set of deferred operations. To compute factorial of n, it had to 
hold onto a multiplication while it went off to compute the 
subproblem of a simpler version of factorial, and that in turn 
required another deferred operation. Thus, the procedure had to 
keep track of something to do, once it was done computing a 

subproblem, and this meant that as the argument to the procedure gets larger, we would have more things to keep 
track of. We would like to see if there is another way of computing factorial, without all of those deferred 
operations. 

Slide 3.4.3 
The specific question we want to consider is whether we can 
design an algorithm for factorial that uses only constant space. 
By this we mean that the computation does not require keeping 
track of any deferred operations, but rather can perform its 
work without using up any additional memory to keep track of 
things to do. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.4 
So that's our goal, to compute factorial in a different way that is 
not characterized by those deferred multiplications 

Slide 3.4.5 
... and here is the intuition behind this different approach. Let's 
think about how you might do this if you were executing the 
computation by hand. One way to do this is to multiply out the 
first two numbers, and keep track of that temporary product, 
plus the next stage in the computation. For example, for 
factorial of 4, you would multiply out 4 by 3, keep track of the 
result, 12, and the fact that the next thing to multiply is 2. You 
would then multiply the current result, 12, by 2, keeping track 
of that result and the next thing to multiply by. 

Slide 3.4.6 
Notice that in this version, we only need to keep track of 2 
things, the current product, and the next thing to do. This is 
different from the recursive case, where we were blindly 
keeping track of each pending multiplication. Here, we replace 
the previous product by the new one, and the next multiplier by 
the new one, whereas in the previous case we had to keep track 
of each deferred operation, i.e. I have to multiply by 2, then I 
have to multiply by 3, then ... 

Slide 3.4.7 
Thus, we only need a constant amount of space. To stress, think 
about the recursive case. There, we had to write down that I 
have a pending operation of multiplication by some number, 
plus another pending operation of multiplication by another 
number, and so on. Keeping track of each such pending 
operation takes a bit more space. In this case, I only need two 
pieces of information, the current product and the next 
multiplier. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.8 
The reason I can do this is because multiplication satisfies two 
nice properties from mathematics, that in essence say I can do 
the multiplication in any order, and accumulating partial 
answers along the way will not affect the result. Thus, I can 
come up with an algorithm that only uses constant space. 

Slide 3.4.9 
So now let's capture that idea a little more formally. I can use 
the same sort of notion in a table, in which I have one column 
for each piece of information I am going to need, and one row 
for each step of the computation. Each step here means how to 
do I go from a current state, captured by a temporary product 
and a counter that tells me the next thing to multiply, to the next 
state of those parameters. 

Slide 3.4.10 
Now what I need to do is come up with a rule for how I am 
going to change the values in the table. In particular, to get the 
next value for product, I take the current value of product and 
the current value of counter, multiply them, and that becomes 
the next entry in the product column. 

Slide 3.4.11 
Similarly, I need a rule for getting the next value for counter. 
That, we know, is simply given by adding 1 to the current row's 
value for counter, thus generating the next row's value for 
counter. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.12 
Of course, I can keep repeating this process, updating the 
values for the product column and the counter column until I 
am ready to stop. 

Slide 3.4.13 
And how do I know when I am ready to stop? Well that's easy. 
The last row I want in the table is the one when counter is 
bigger than n. 

Slide 3.4.14 
Ah -- and that indicates one more thing. I will need another 
column to keep track of n, since each column specifies a 
needed piece of information and that is one more. The fact that 
the value doesn't change is irrelevant, what matters is that I 
need to keep track of this information. 

Slide 3.4.15 
Once I am done, I still need to get the answer out, but I know 
where that is. It's sitting in the element at the intersection of the 
product column and the last row. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.16 
The only other thing I need to do is figure out how to start this 
process off. And this is also easy. My first row will deal with 
the equivalent of a base case. 0! is just 1, so I can start my 
product at 1, my counter at 1, set up N to be whatever value I 
want to compute, and I can then start this table process 
underway using the rules I just described. 

Slide 3.4.17 
Now let's write a procedure to do this. I am going to define a 
procedure called ifact. As you can see, I use a lambda 
to create the procedure of one argument, and I use a define 
to give it a name. Notice that the body of the procedure is just a 
call to another procedure, a helper procedure that I am also 
going to define. 
The reason I need a helper procedure is clear from my previous 
discussion. I need to keep track of three things during the 
computation, so I need a procedure with three arguments, as 
shown, one for each column of my table. The body of this 
helper procedure looks a lot like my earlier recursive procedure, 
but with some important differences. First, there is a test case, to tell when we are done. Here we don't have a base 
case, but rather there is a return value, an answer to give when the test case holds. The iterative case, the thing to 
do if the test case is not true, is slightly different from our recursive case. Here, the call to the procedure has new 
arguments, one for each parameter. Notice how the new argument in each case captures the update rule from the 
table. 

Slide 3.4.18 
So now let's think about what happens if I evaluate ifact. 

The value of ifact with some argument n will be the same 

as evaluating the body of the procedure, that is ifact
helper with arguments 1, 1, and n. Notice that this is just 

setting up the initial row of my table. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.19 
Then look at what happens when we evaluate ifact
helper. In fact, it just computes the next row of that table. 

It says that the value of ifact-helper when called on 

arguments for product, counter and n, is the same as evaluating 
ifact-helper with new values for product, counter and 

n, each of which exactly captures the update rules from my 
table. 

Slide 3.4.20 
And what else do I need? Just to determine when to stop. So I 
have a test to determine when that happens, and at that stage, I 
know that the answer is in the product column, so I simply 
return that value. 

ifact on some argument, say 4, reduces to calling ifact-

Slide 3.4.21 
To trace how this works, we use our substitution model. Calling 

helper on arguments 1, 1, and 4, since that is what the 

body of ifact contains, where we have substituted 4 for 

the parameter n. 

Slide 3.4.22 
The substitution model then says to substitute the arguments for 
the formal parameters in the body of ifact-helper and 

evaluate that instantiated body, namely this if expression. We 

saw that if is a special form, and this means we first evaluate 

the predicate. Since in this case it returns a false value, the 
value of the whole if expression reduces to the value of the 
alternative clause. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.23 
Evaluating the expressions for the arguments then reduces to 
this expression. 
Notice an important thing. We have reduced the evaluation of 
one expression involving ifact-helper to a different 

expression involving ifact-helper, with a different set 

of arguments, or parameters. But there are no deferred 
operations here, that is, there are no operations that we have to 
keep track of while we go off and compute some subproblem. 
Rather the answer to evaluating this expression is the answer to 
evaluating the first one directly. 

Slide 3.4.24 
And we can just repeat this process, with the same behavior, 
until the predicate is true. 
Notice the form of the red expressions. They are constant in 
size. There are no deferred operations, no storage of 
expressions while I go get the value of a subexpression. Instead, 
the variables that capture the state of the computation change 
with each evaluation. This is very different from the shape of 
the previous version of factorial. There, we had a set of deferred 
operations, and the size of the expressions grew with each step. 
Here there are no deferred operations, and a constant amount of 
space is needed to keep track of the computation. 

Slide 3.4.25 
Let's compare this to the recursive version. Remember that we 
had that pending operation, and it caused the shape of the 
procedure's evolution to be different. It grew with each new 
evaluation, because that extra pending operation had to be 
tracked, including information relevant to each operation. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.4.26 
Compare that to the iterative version. Here there are no pending 
operations. The value of one call to the procedure is the same as 
the value of a different call to the same procedure, that is, 
different arguments but nothing deferred. As a consequence, 
this procedure has a fixed size, or constant, evolution. 
So we have seen two different implementations of the same 
computation, with different behaviors. 

Slide 3.4.27 
And this summarizes what we have seen so far. 

6.001 Notes: Section 3.5 

Slide 3.5.1 
So how do we know that our code is actually correct? It would 
be nice if we could guarantee that our code would run correctly, 
provided we give it correct inputs. So how do we ensure this? 
Well there are several possibilities. We could accept the word 
of someone with power over our future (e.g. a 6.001 professor) 
that the code is right. Clearly not a wise idea, though it is 
shocking how often this approach is used! A more common 
method is to rely on statistics, that is, to try our code on a bunch 
of example inputs, and hope that if it works on all the ones we 
try, it will work on every input. Sometimes this is the best you 
can do, but clearly there are no guarantees with this approach. 
All too often, programmers rely on the third method, also 
known as arrogance. They just assume that they wrote correct code, and are stunned when it fails. 
The best method, when possible, is to actually formally prove that our code is correct. And it is this method that we 
are going to briefly explore here. We won't show you all the elements of proving programs correct, but we will 
provide you with a basis for understanding how this is done, and more importantly for using the reasoning pattern 
underlying this proof method to help you design good code. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.5.2 
First, we need to talk about what constitutes a formal proof. 
Technically, a proof of a mathematical or logical proposition is 
a chain or sequence of logical deductions that starts with a base 
set of axioms and leads to the proposition we are attempting to 
prove. Now, we need to fill in the details on these pieces. 
First, a proposition is basically a statement that is either true or 
false. Typically, in propositional logic, we have a set of atomic 
propositions, i.e., simple statements of fact. For example, "n=0" 
is an atomic proposition. Given some value for the variable n, 
this statement is either true or false (assuming that n is a 
number, of course). 
More interesting propositions (and things that we are more 

likely to be interested in proving) are created by combining simpler propositions. There are five standard ways of 
creating compound propositions: one can take the conjunction (which acts like an "and", meaning the compound 
proposition is true if and only if both of the individual propositions are true); one can take the disjunction (which 
acts like an "or", meaning the compound proposition is true if and only if one or the other of the individual 
propositions is true); one can take the negation of a proposition (which means the proposition is true if and only if 
the initial proposition is false); we can create the implication (which means that if P is true, then Q is true); and we 
can establish an equivalence (which means that P is true if and only if Q is true). 
Note that compound propositions can have elements that are themselves compound propositions, so that we can 
create deeply nested propositions. 

Slide 3.5.3 
We can capture the logical structure of these compound 
propositions by simply looking at the possible cases. If we 
consider all possible combinations for the base propositions, we 
can chart out the veracity of the compound proposition. Thus, 
we see that "P and Q" behaves as we would expect; it is true as 
a statement if and only if both P and Q are true. Negation and 
disjunction also behave as expected. So does equivalence, since 
the combination can only be true when both simpler elements 
are. 
Implication is a bit more puzzling. The proposition is defined to 
be true if either P is false or Q is true. To see this, take a simple 
example. Suppose we consider the proposition: "If n is greater 
than 2, then n squared is greater than 4". Then for example, if n equals 4, both propositions are true, and our truth 
table also states that the implication is true. If for example, n equals -4, then the first proposition is false and the 
second proposition is true. The compound statement is true, as we can see from the truth table, and this makes 
sense, since the consequent can clearly still be true even if the precedent is not. Finally, suppose n equals 1. In this 
case both propositions are false, however the statement as a whole is true. 
This particular combination thus has a rather counterintuitive aspect: it is always true if the first part is false. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.5.4 
Now, given that we can construct propositions, we want to be 
able to prove their correctness by chaining together a sequence 
of logical deductions, starting from a set of axioms (which are 
propositions that are assumed to be true). The basic idea is that 
we start with statements that are correct, and then use standard 
deductions to reason about statements whose veracity we are 
attempting to establish. 
For example, a common inference rule (which has been around 
at least since Aristotle) is modus ponens. This basically 

says that if we have a proposition P that is true. And we have an 
implication (P implies Q) that is also true, and then we can 
deduce that Q is a true proposition. 


A related (and equally old) inference rule is modus tollens. This basically states that if we have an 


implication that P implies Q, and we also know that Q is not true, then we can infer that P is not true. 


Slide 3.5.5 
Now, given these tools, we could go off and prove statements 
of fact. Unfortunately, the things we want to prove about 
programs (e.g. does this code run for all correct inputs) require 
potentially infinite propositions, since we would have to take a 
conjunction of propositions, one for each input value. So we 
need to extend our propositional logic to predicate logic. 
We handle this by creating propositions with variables, and 
then specifying the set of values (called the universe or domain 
of discourse) over which the variable may range. 
Since predicates apply over ranges, we also can put conditions 
on those predicates. The two basic quantifiers are known as 
"for all" and "there exists". They capture the cases in which the 
predicate is true for all possible values in the universe, and in which the predicate is true for at least one value in 
the universe. 

Slide 3.5.6 
Now we are ready to put all these tools together to prove things 
about predicates. We are particularly interested in a proof 
method called proof by induction, which is shown here. 
Less formally, this method basically says the following. 
Suppose you can show that the predicate is true for some initial 
case (here we are assuming the universe is the set of non
negative integers, so this initial case is n equal 0, if the universe 
were different the initial case would also be different). Now 
suppose you can somehow also show that for any value of n in 
the universe, the implication that if the proposition is true for 
that n it is then also true for an incremented n is true. In this 

case, induction allows you to deduce that the proposition is true 
for all values of n in the universe. 
Note what this buys you. It says that you need only show that the statement is true for some base case; and you 
need only show that for some arbitrary value of n, if the proposition is true for that n then you can show it is true 
for the next value of n. You don't need to check all values; you just need to show that the implication holds. In 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

essence, you can "bootstrap" a proof that the statement is always true. 

Slide 3.5.7 
Let's make this a bit less murky with an example. Suppose I 
want to prove the predicate shown here for all non-negative 
values of n, that is, that the sum of the powers of 2 can be 
captured by the simple expression shown on the right. 
To prove this by induction, I should first really specify the 
universe, which I will take to be all non-negative integers. 
Then, I need to show that this is true for the base case, when n 
is zero. That is easy. I just substitute for n on both sides of the 
equation, and check that 1 is the same as 2 - 1. 
Now for the inductive step. Let's start with the left side of the 
equation for the n+1 case. I can rewrite this as shown in the first 
step. Now, I want to rewrite this way because the first term on 
the right is just the same predicate, but now for argument n. But by induction, I simply want to show that if this 
version of the predicate is true, so is the version I am considering. So I can replace that summation with the 
implication from the predicate, and then some simple arithmetic shows that I get the expression I want. I have now 
shown that if the proposition is true for n, then it must also be true for n+1. And now by induction I can conclude it 
is true for all legal values of n. 

Slide 3.5.8 
So what we have is a way of proving things by induction. The 

steps are as shown. 

We first define the predicate we want to prove correct, 

including specifying what the variable denotes and the range of 

legal values of the variable. 

We then prove that the predicate is true in the base case (which 

we have here assumed is for n equal to 0) 

We then prove that the implication holds, and this allows us to 

conclude that the predicate is always true. 


Slide 3.5.9 
So finally we can relate this back to programs. Suppose we 
want to prove that our code for factorial is correct, that is, that it 
will always run correctly. Note that there is a hidden 
assumption here, namely that we give it a correct input. Note 
that here, we have made the unstated assumption that factorial 
only applies to integers greater than or equal to one. If we 
provide some other value, all bets are off. In other words, our 
universe here is positive integers. 
So here is our code, and our proposition is that this code 
correctly computes n! given a legal value for n. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 3.5.10 
Thus to prove it we first consider the base case. Remember that 
here our base case is n equal 1, since that is the starting point 
for our universe of values. Is our proposition valid? 
Sure! We know that our "if" statement will in this case take the 
path through the consequent, and just return the value 1, which 
we also know is the desired answer. 

Slide 3.5.11 
So what about the inductive step? In this case we can assume 
that our code works correctly for some arbitrary, but legal, 
value of n, and we want to show that under that assumption, it 
also works correctly for n+1. 
In this case, we will take the consequent path through the "if" 
expression. Our substitution model says that the value of this 
expression is found by finding the values of the subexpressions, 
then applying the first to the others. Finding the value of * is 
easy, as is the value of the sum. By induction, we can assume 
that the value of the last subexpression will be the correct value 
of factorial. 
As a consequence, applying the multiplication operator to the 
value of n+1 and n! will return (n+1)! and hence we can conclude that this will always produce the right answer! 

Slide 3.5.12 
Now, let's pull this together. The message to take away from 
this exercise is that induction provides a basis for 
understanding, analyzing and proving correctness of recursive 
procedure definitions. 
Moreover, exactly this kind of thinking can be used when we 
design programs, not just when we analyze them. When given a 
new problem to solve, it is valuable to identify the base case 
and find a solution for it. Then, one turns to the issue of 
breaking the problem down into a simpler version of the same 
problem, assuming that the code will solve that version, and 
using that to construct the inductive step: how to solve the full 

version of the problem. 
We hope that you will use this approach as you build your own procedures. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


