
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 5.1 

Slide 5.1.1 
In this lecture we are going to continue with the theme of 
building abstractions. Thus far, we have focused entirely on 
procedural abstractions: the idea of capturing a common pattern 
of computation within a procedure, and isolating the details of 
that computation from the use of the concept within some other 
computation. Today we are going to turn to a complementary 
issue, namely how to group together pieces of information, or 
data, into abstract structures. We will see that the same general 
theme holds: we can isolate the details of how the data are glued 
together from the use of the aggregate data structure as a 
primitive element in some computation. We will also see that 
the procedures we use to manipulate the elements of a data structure often have an inherent structure that mimics 
the data structure, and we will use this idea to help us design our data abstractions and their associated procedures. 

Slide 5.1.2 
Let's review what we have been looking at so far in the course, 
in particular, the idea of procedural abstraction to capture 
computations. Our idea is to take a common pattern of 
computation, then capture that pattern by formalizing it with a 
set of parameters that specify the parts of the pattern that 
change, while preserving the pattern inside the body of a 
procedure. This encapsulates the computation associated with 
the pattern inside a lambda object. Once we have abstracted that 
computation inside the lambda, we can then give it a name, 
using our define expression, then treat the whole thing as a 

primitive by just referring to the name, and use it without 
worrying about the details within the lambda. 

Slide 5.1.3 
This means we can treat the procedure as it if is a kind of black 
box. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.1.4 
We need to provide it with inputs of a specified type. 

Slide 5.1.5 
We know by the contract associated with the procedure, that if 
we provide inputs of the appropriate type, the procedure will 
produce an output of a specified type... 

Slide 5.1.6 
... and by giving the whole procedure a name, we create this 
black box abstraction, in which we can use the procedure 
without knowing details. This means that the procedure will 
obey the contract that specifies the mapping from inputs to 
outputs, but the user is not aware of the details by which that 
contract is enforced. 

Slide 5.1.7 
So let's use this idea to look at a more interesting algorithm than 
the earlier ones we've examined. Here, again, is Heron of 
Alexandria's algorithm for computing good approximations to 
the square root of a positive number. Read the steps carefully, as 
we are about to implement them. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.1.8 
Now, let's use the tools we seen so far to implement this method. 
Notice how the first procedure uses the ideas of wishful 
thinking, and recursive procedures to capture the basic idea of 
Heron's method. Try is a procedure that takes a current guess 

and the x, and captures the top-level idea of the method. It 

checks to see if the guess is sufficient. If it is, it simply returns 
the value of that guess. If it is not, then it tries again, with a new 
guess. 
Note how we are using wishful thinking to reduce the problem 
to another version of the same problem, and to abstract out the 
idea of both getting a new guess and checking for how good the 
guess is. These are procedures we can subsequently write, for 

example, as shown. Finally, notice how the recursive call to try will use a different argument for guess, since we 


will evaluate the expression before substituting into the body. 

Also notice the recursive structure of try and the use of the special form if to control the evolution of this 


procedure. 
The method for improve simply incorporates the ideas from the algorithm, again with a procedure abstraction 


to separate out idea of averaging from the procedure for improving the guess. 

Finally, notice how we can build a square root procedure on top of the procedure for try. 


Slide 5.1.9 
If we think of each of these procedures as its own black box 
abstraction, then we can visualize the universe containing these 
procedures as shown. Each procedure exists with its own 
contract, but each is accessible to the user, simply by referring to 
it by name. 
While this sounds fine in principle, there is a problem with this 
viewpoint. Some of these procedures are general methods, such 
as average and sqrt, and should be accessible to the 

user, who might utilize them elsewhere. Some of them, 
however, such as try or good-enuf?, are really specific 

to the computation for square roots. Ideally we would like to 
capture those procedures in a way that they can only be used by sqrt but not by other methods. 

Slide 5.1.10 
Abstractly, this is what we would like to do. We would like to 
move the abstractions for the special purpose procedures inside 
of the abstraction for sqrt so that only it can use them, while 

leaving more generally useful procedures available to the user. 
In this way, these internal procedures should become part of the 
implementation details for sqrt but be invisible to outside 

users. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.1.11 
And here is how to do this. 
Note that the definition of sqrt bind this name to a lambda. 


Within the bounds of that lambda we have moved the 

definitions for improve, good-enuf?, and sqrt

iter (which is what we have renamed try). By moving 


these procedures inside the body of the lambda, they become 

internal procedures, accessible only to other expressions within 

the body of that lambda. That is, if we try to refer to one of these 

names when interacting with the evaluator, we will get an 

unbound variable error. But these names can be referenced by 

expressions that exist within the scope of this lambda. 

The rules of evaluation say that when we apply sqrt to some argument, the body of this lambda will be 


evaluated. At that point, the internal definitions are evaluated. 

The final expression of the lambda is the expression (sqrt-iter 1.0) which means when sqrt is 

applied to some argument, by the substitution model it will reduce to evaluating this expression, meaning it will 
begin the recursive evaluation of guesses for the square root. 

Slide 5.1.12 
In fact we can stress this by drawing a box around the boundary 
of the outermost lambda. Clearly that boundary exactly scopes 
the black box abstraction that I wanted. 
This is called block structure, which you can find, discussed in 
more detail in the textbook. 

Slide 5.1.13 
Schematically, this means that sqrt contains within it only 

those internal procedures that belong to it, and behaves 
according to the contract expected by the user, without the user 
knowing how those procedures accomplish this contract. 
This provides another method for abstracting ideas and isolating 
them from other abstractions. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.1.14 
So here is the summary of what we have seen in this section. 

6.001 Notes: Section 5.2 

Slide 5.2.1 
So let's take that idea of abstraction and build on it. To set the 
stage for what we are about to do, it is useful to think about how 
the language elements can be group together into a hierarchy. 
At the atomic level, we have a set of primitives. In Scheme, 
these include primitive data objects: numbers, strings and 
Booleans. And these include built-in, or primitive, procedures: 
for numbers, things like *, +, =, >; for strings, things like 
string=?, substring; for Booleans, things like and, or, not. 
To put these primitive elements together into more interesting 
expressions, we have a means of combination, that is, a way of 
combining simpler pieces into expressions that can themselves 
be treated as elements of other expressions. The most common 
one, and the one we have seen in the previous lectures, is procedure application. This is the idea of creating a 
combination of subexpressions, nested within a pair of parentheses: the value of the first subexpression is a 
procedure, and the expression captures the idea of applying that procedure to the values of the other expressions, 
which means as we have seen that we substitute the values of the arguments for the corresponding parameters in the 
body of the procedure, and proceed with the evaluation. We know that these combinations can themselves be 
included within other combinations, and the same rules of evaluation will recursively govern the computation. 
Finally, our language has a means of abstraction: a way of capturing computational elements and treating them as 
if they were primitives; or said another way, a method of isolating the details of a computation from the use of a 
computation. Our first means of abstraction was define, the ability to give a name to an element, so that we could 
just use the name, thereby suppressing the details from the use of the object. This ability to give a name to 
something is most valuable when used with our second means of abstraction, capturing a computation within a 
procedure. This means of abstraction dealt with the idea that a common pattern of computation can be generalized 
into a single procedure, which covered every possible application of that idea to an appropriate value. When 
coupled with the ability to give a name to that procedure, we engendered the ability to create an important cycle in 
our language: we can now create procedures, name them, and thus treat them as if they were themselves primitive 
elements of the language. The whole goal of a high-level language is to allow us to suppress unnecessary detail in 
this manner, while focusing on the use of a procedural abstraction to support some more complex computational 
design. 
Today, we are going to generalize the idea of abstractions to include those that focus on data, rather than 
procedures. So we are going talk about how to create compound data objects, and we are going to examine standard 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

procedures associated with the manipulation of those data structures. We will see that data abstractions mirror many 
of the properties of procedural abstractions, and we will thus generalize the ideas of compound data into data 
abstractions, to complement our procedural abstractions. 

Slide 5.2.2 
So far almost everything we've seen in Scheme has revolved 
around numbers and computations associated with numbers. 
This has been partly deliberate on our part, because we wanted 
to focus on the ideas of procedural abstraction, without getting 
bogged down in other details. There are, however, clearly 
problems in which it is easier to think in terms of other elements 
than just numbers, and in which those elements have pieces that 
need to be glued together and pulled apart, while preserving the 
concept of the larger unit. 

Slide 5.2.3 
So our goal is to create a method for taking primitive data 
elements, gluing them together, and then treating the result as if 
it were itself a primitive element. Of course, we will need a way 
of "de-gluing" the units, to get back the constituent parts. 
What do we mean when we say we want to treat the result of 
gluing elements together as a primitive data element? Basically 
we want the same properties we had with numbers: we can 
apply procedures to them, we can use procedures to generate 
new versions of them, and we can create expressions that 
include them as simpler elements. 

Slide 5.2.4 
The most important point when we "glue" things together is to 
have a contract associated with that process. This means that we 
don't really care that much about the details of how we glue 
things together, so long as we have a means of getting back out 
the pieces when needed. This means that the "glue" and the 
"unglue" work hand in hand, guaranteeing that however, the 
compound unit is created, we can always get back the parts we 
started with. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.2.5 
And ideally we would like the process of gluing things together 
to have the property of closure, that is, that whatever we get by 
gluing things into a compound structure can be treated as a 
primitive so that it can be the input to another gluing operation. 
Not all ways of creating compound data have this property, but 
the best of them do, and we say they are closed under the 
operation of creating a compound object if the result can itself 
be a primitive for the same compound data construction process. 

Slide 5.2.6 
Scheme's basic means for gluing things together is called 
cons, short for constructor, and virtually all other methods 

for creating compound data objects are based on cons. 

Cons is a procedure that takes two expressions as input. It 

evaluates each in turn, and then glues these values together into 
something called a pair. Note that the actual pair object is the 
value returned by evaluating the cons. The two parts of a cons 

pair are called the car and the cdr, and if we apply the 
procedures of those names to a pair, we get back the value of the 
argument that was evaluated when the pair was created. 

Note that there is a contract here between cons, car and cdr, in 
which cons glues things together in some arbitrary manner, and all that matters is that when car, for example, is 
applied to that object, it gets back out what we started with. 

Slide 5.2.7 
Note that we can treat a pair as a unit, that is, having built a pair, 
we can treat it as a primitive and use it anywhere we might use 
any other primitive. So we can pass a pair in as input to some 
other data abstraction, such as another pair. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.2.8 
In this way, we can create elements that are naturally thought of 
as simple units that happen to themselves be created out of 
elements that are also thought of as simple units. This allows us 
to build up levels of hierarchy of data abstractions. 
For example, suppose we want to build a system to reason about 
figures drawn in the plane. Those figures might be built out of 
line segments that have start and end points, and those points are 
built out of x and y coordinates. 
Notice how there is a contract between make-point and point-x 
or point-y, in which the selectors get out the pieces that are 
glued together by the constructor. Because they are built on top 
of cons, car and cdr, they inherit the same contract that holds 

there. And in the case of segments, these pieces are glued together as if they are primitives, so that we have cons 
pairs whose elements are also cons pairs. 
Thus we see how cons pairs have the property of closure, in which the result of consing can be treated as primitive 
input to another level of abstraction. 

Slide 5.2.9 
We can formalize what we have just seen, in terms of the 
abstraction of a pair. This abstraction has several standard parts. 
First, it has a constructor, for making instances of this 
abstraction. The constructor has a kind of contract, in which 
objects A and B are glued together to construct a new object, 
called a Pair, with two pieces inside. 
Second, it has some selectors or accessors to get the pieces back 
out. Notice how the contract specifies the interaction between 
the constructor and the selectors, whatever is put together can be 
pulled back apart using the appropriate selector. 
Typically, a data abstraction will also have a predicate, here 
called pair?. Its role is to take in any object, and return 

true if the object is of type pair. This allows us to test objects for their type, so that we know whether to apply 

particular selectors to that object. 
The key issue here is the contract between the constructor and the selectors. The details of how a constructor puts 
things together are not at issue, so long as however the pieces are glued together, they can be separated back out 
into the original parts by the selectors. 

Slide 5.2.10 
So here we just restate that idea, one more time, stressing the 
idea of the contract that defines the interaction between 
constructor and selectors. And, we stress one more time the idea 
that pairs are closed, that is, they can be input to the operation of 
making other pairs. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 5.3 

Slide 5.3.1 
So how do we use the idea of pairs to help us in creating 
computational entities? To illustrate this, let’s stick with our 
example of points and segments. Suppose we construct a couple 
of points, using the appropriate constructor, and we then glue 
these points together into a segment. 

Slide 5.3.2 
Now suppose we want to think about the operation of stretching 
a point, that is, pulling (or pushing) it along a line from the 
origin through the point. Ideally, we would just think about this 
in terms of operations on elements of a point, without worrying 
about how the point is actually implemented. We do this with 
the code shown. 
Note how this code creates a new data object. If we stretch 
point P1, we get a new point. Also note, as an aside, how a cons 
pair prints out, with open and close parentheses, and with the 
values of the two parts within those parentheses, separated by a 
dot. Thus, the point created by applying our stretch procedure 

has a different value for the x and y parts than the original point, 
which is still hanging around. Thus, as we might expect from the actual code, we get out the values of the parts of 
P1, but then make a new data object with scaled versions of those values as the parts. 

Slide 5.3.3 
And we can generalize this idea to handle operations on 
segments, as well as points. Note how each of these procedures 
builds on constructors and selectors for the appropriate data 
structure, so that in examining the code, we have no sense of the 
underlying implementation. These structures happen to be built 
out of cons pairs, but from the perspective of the code designer, 
we rely only on the contract for constructors and selectors for 
points and segments. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.4 
Now, suppose we decide that we want to take a group of points 
(which might have segments defined between adjacent points) 
and manipulate these groups of points. For example, a figure 
might be defined as a group of ordered points, with segments 
between each consecutive pair of points. And we might want to 
stretch that whole group, or rotate it, or do something else to it. 
How do we group these things together? 
Well, one possibility is just to use a bunch of cons pairs, such as 
shown here. But while this is a perfectly reasonable way to glue 
things together, it is going to be a bear to manipulate. Suppose 
we want to stretch all these points? We would have to write 
code that would put together the right collections of car’s and 

cdr’s to get out the pieces, perform a computation on them, and then glue them back together again. This will be a 
royal pain! It would be better if we had a more convenient and conventional way of gluing together groups of 
things, and fortunately we do. 

Slide 5.3.5 
Pairs are a nice way of gluing two things together. However, 
sometimes I may want the ability to glue together arbitrary 
numbers of things, and here pairs are less helpful. Fortunately, 
Scheme also has a primitive way of gluing together arbitrary sets 
of objects, called a list, which is a data object with an arbitrary 
number of ordered elements within it. 

Slide 5.3.6 
Of course, we could make a list by just consing together a set of 
things, using however many pairs we need. But it is much more 
convenient to think of a list as a basic structure, and here is more 
formally how we define such a structure. A list is a sequence of 
pairs, with the following properties. The car part of a pair in the 
list holds the next element of the list. The cdr part of a pair in the 
list holds a pointer to the rest of the list. We will also need to tell 
when we are at the end of the list, and we have a special symbol, 
nil, that signals the fact that there are no more pairs in the list. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.7 
Another way of saying this is that lists are sequences of pairs 
ending in the empty list. Under that view, we see that lists are 
closed under the operations of cons and cdr. To see this, note 
that if we are given a sequence of pairs ending in the empty list, 
and we cons anything onto that sequence, we get another 
sequence of pairs ending in the empty list, hence a list. 
Similarly, if we take the cdr of a sequence of pairs ending in the 
empty list, we get a smaller sequence of pairs ending in the 
empty list, hence a list. This property of closure says we can use 
lists as primitives within other lists. 
The only trick is what happens when I try to take the cdr of an 
empty list. The result depends on the Scheme implementation, 
as in some cases it is an error, while for other Schemes it is the empty list. The latter view is nice when considering 
the closure property as it preserves the notion that the cdr of a list is a list. 

Slide 5.3.8 
To visualize this new conventional way of collecting elements, 
called a list, we use box-and-pointer notation. First, a cons pair 
is represented by a pair of boxes. The first box contains a pointer 
to the value of the first argument to cons and the second box 
contains a pointer to the value of the second argument to cons. 
The pair also has a pointer into it, and that pointer is the value 
returned by evaluating the cons expression, and represents the 
actual pair. 

Slide 5.3.9 
A list then simply consists of a sequence of pairs, or boxes, 
which we conventionally draw in a horizontal line. The car 
element of each box points to an element of the sequence, and 
the cdr element of each box points to the rest of the list. The 
empty list is indicated by a diagonal line in the last cdr box. 
One can see that the list is much like a skeleton. The cdrs define 
the spine of the skeleton, and hanging off the cars are the ribs, 
which contain the elements. Also notice how this visualization 
clearly defines the closure property of lists, since taking the cdr 
of a list gives us a new sequence of boxes ending the empty list. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.10 
To check if something is a list, we need two things. First, we 
have a predicate, null? that checks to see if an object is the 

empty list. Then, to check if a structure is a list, we can just use 
pair? to see if the structure is a sequence of pairs. Actually, 

we really should check to see that the sequence ends in the 
empty list, but conventionally we just check to see that the first 
element is a pair, that is, something made by cons. 

Slide 5.3.11 
Since we have built lists out of cons pairs, we can use car and 

cdr to get out the pieces. But just for today, we are going to 

separate the operations on lists from operations on pairs, by 
defining special selectors and constructor for lists, as shown. 
Thus we have a way of getting the first and rest of the elements 
of a list, and for putting a new element onto the front of a list. 
Notice how these operations inherit the necessary closure 
properties from their implementation in terms of cons, car and 
cdr. 

Slide 5.3.12 
A key point behind defining a new data abstraction is that it 
should make certain kinds of operations easy to perform. We 
expect to see that with lists, and in what follows we are going to 
explore that idea, looking for standard kinds of operations 
associated with lists. 
One common operation is the creation of lists. Here is a simple 
example of this, which generates a sequence (or list) of numbers 
between two points. Notice the nice recursive call within this 
procedure. It says, to generate such a list, cons or glue the value 
of from onto whatever I get by creating the interval from from 
+ 1 to to. This is reducing things to a simpler version of the 

same problem, terminating when I just have an empty list. 
Notice how the constructor relies on the data abstraction contract. If this procedure works correctly on smaller 
problems, then the adjoin operation is guaranteed to return a new list, since it is gluing an element onto a list, and 
by closure this is also a list. This kind of inductive reasoning allows us to deduce that the procedure correctly 
creates the right kind of data structure. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.13 
Here is a trace of the substitution model running on an example 
of this. Notice how the if clause unwinds this into an adjoining 
of an element onto a recursive call to the same procedure with 
different arguments. Since we must get the values of the 
subexpressions before we can apply the adjoin operation, we 
expand the recursive call out again, creating another deferred 
adjoin operation. And we keep doing this until we get down to 
the base case, returning the value of the empty list. Notice that 
this now leaves us with an expression that will create a list, a 
sequence terminating in the special symbol for an empty list. 

Slide 5.3.14 
Now we are ready to evaluate the innermost expression, which 
actually creates a cons pair. To demonstrate this, we have drawn 
in the pair to show that this is the value returned by adjoin. 
Notice how it has the correct form for a list. 

Slide 5.3.15 
The next evaluation adjoins another element onto this list, with 
the cdr pointer of the newly created cons pair pointing to the 
value of second argument, namely the previously created list. 

Slide 5.3.16 
And this of course then leads to this structure. This prints out as 
shown, which is the printed form for a list. 
Notice the order in which the pairs are created, and notice the set 
of deferred operations associated with the creation of this list. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.17 
In addition to procedures that can "cons up" a list, we have 
procedures that can walk down a list, also known as "cdring 
down" a list. 
Here is a simple example, which finds the nth element of a list, 
where by convention a list starts at 0. Notice how we use the 
recursive property of a list to do this. If our index is 0, then we 
want the first element. Otherwise, we know that the nth element 
of a list will be the n-1st element of the rest of the list, by the 
closure property of lists. So we can recursively reduce this to a 
simpler version of the same problem. 
For the example shown, we will first check to see if n=0. Since 
it does not, we take the list pointed to by joe, extract the rest 

of that list by literally taking the pointer out of the cdr part of the first box, and call list-ref on that structure, with a 
decrement of n. This recursive call will now have n=0, so we return the first element of the new list, namely the 

element 3. 

Slide 5.3.18 
A related procedure is to count up the number of elements in a 
list, using the same sort of recursive reasoning. Length of a 

list is defined as 1 more than the length of the rest of a list, 
which by the closure property is also a list. The base case is the 
empty list, which has zero length. 

Slide 5.3.19 
Now we can put the two ideas together, cdring down one list 
while consing up a new one as the return value. Here is an 
example, which creates a copy of a list. 
Notice the form. If we are given an empty list, we just return an 
empty list and are done. If not, then we use the recursive 
property of lists. We adjoin the first element of the input list 
onto whatever we get by copying the rest of the list. But by 
closure, the rest of the input list is a list, so copy is guaranteed 
by induction to give us back a list. And by what we just saw, we 
see that copy will create a copy of the list in exactly the same 
order. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.20 
Well copying is boring, but here is how we can use this idea. 

Suppose we want to glue two lists together into one long list, as 

shown in the example. 

Let's just use the same strategy, implemented in a handy 

procedure called append. For the base case, notice that if we 


do not have anything in the first list, we just want the second 
list. Otherwise, we use the same idea as before. We adjoin the 
first element of the first list onto whatever we get by appending 
the rest of the first list onto the second list. Using the same 
closure properties, we see that this will create a list, and adjoin 
will then put the first element on the front of this new list. 
Notice how we are using the recursive properties of lists to build 

this procedure, and in particular notice how the recursive structure of the procedure nicely mimics the recursive 
structure of the data object. 

Slide 5.3.21 
So now we can put these ideas to work in handling more 
complex structures. Let’s group together a set of points using a 
list. Then we can easily write a procedure to stretch the entire 
group, by building on the wonderfully recursive nature of the 
list. Here it is. 
Note how we subdivide the problem of stretching a group into 
the operation of stretching a point (using the procedure 
appropriate for points), and then adding that to the result we 
would get by stretching the rest of the group. Because of the 
recursive nature of a list, we know that the rest of a list is a list, 
so we can use induction to conclude that stretch-group applied to 
the smaller collection will return a new group, and thus 
adjoining the new element to the front of this will clearly give us back a group. 

Slide 5.3.22 
And if we want to find the midpoint (or centroid) of the group, 
we can put together the pieces we built earlier, as shown here. 
Add-x and add-y have a structure very similar to our earlier 
examples: they simply cdr down the list, gathering up 
information as they go in a set of deferred additions. Each of 
these will get the sum of the x and y values of all the points in a 
group. To find the midpoint we need to get the average x and y 
value, so we need to know how many elements are in the group, 
which we get using length. We can combine this information to 
create a new point at the middle of the group. 
Note the new form let. You can find the details in the textbook, 

but it suffices to think of this as an expression in which each of 
the names in the first set of expressions (x-sum, y-sum and how-many) are bound to the values of the expressions 
following those names. Then within the confines of the let expression, those names are simply local names for 
those values, and are substituted for just as we would in the standard substitution model. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.3.23 
So to summarize: we have seen that languages often provide 
conventional ways of grouping data elements into structures, 
here either in pairs or as arbitrarily long collections. Associated 
with these conventional structures are methods for operating on 
them, and these procedures often have a form that mimics the 
structure. For example, in procedures that convert lists into lists, 
we see that the recursive step usually involves using the 
selectors to get out the parts of the list, operating on each, and 
then using the constructor to reassemble the parts into a list. 
This form means that the same inductive proofs we used to 
reason about our recursive procedures will also apply here. We 
can often deduce properties of our procedures and their 
associated data structures by relying on the fact that inductively the procedure operates correctly on smaller sized 
data structures. 

6.001 Notes: Section 5.4 

Slide 5.4.1 
So let's step back and examine what we have built so far. We've 
basically built a hierarchy of data abstractions, each of which is 
constructed out of simpler ones. At the bottom are pairs where 
we have a basic contract from Scheme, about how cons, 
car and cdr interact as a data abstraction. On top of that, we 

have built lists, but where the user can take advantage of the fact 
that lists are also pairs. In fact, we do this directly by using 
car and cdr as our selectors for lists. On top of that, we 

have just built groups, but again the user can take advantage of 
the knowledge that groups are constructed as lists of lists, but 
where she is shielded from the fact that lists are implemented as 
pairs. 

Slide 5.4.2 
In essence, we have built a set of abstraction barriers in which 
the implementation details of a data structure are only weakly 
separated from the use of that structure. This means that we rely 
on the user showing discipline when applying procedures to data 
structures, expecting them not to use procedures that directly 
take advantage of the implementation of the structure. 
Sometimes we are much better off imposing strong abstraction 
barriers between structures, thereby not allowing a user to take 
advantage of the underlying representation. 
Said another way, we have tried to separate out data structures 
that have different conventions for usage, enabling us to think 

about the structures as ways of organizing data, but we've 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

allowed the user to cross over the barrier between those structures to get at the underlying implementation. What 
happens if we decide to make those barriers much stronger, thereby shielding the people who use the abstractions 
from the underlying representation? 

Slide 5.4.3 
This then leads us to the notion of a rigorous data abstraction. 
For example, for pairs here is what we expect in such an 
abstraction. We'll have a constructor for gluing pieces together, 
and it will have a contract between the types of the inputs and 
the type of the data structure constructed. 
We'll have selectors or accessors for getting back out the pieces 
that are glued together. 
And most importantly, we will have a contract between the 
constructor and the selectors, so that whatever we glue together 
with the constructor we can get back out using the appropriate 
selector. 
Notice that this contract says nothing about how the abstraction 
is implemented, only that its behavior is as documented. 
We will have some standard operations on the abstraction, typically predicates for identifying an instance of the 
data abstraction. 
All of this is separated from the actual implementation by what we call an abstraction barrier. Think of this as a 
wall that separates the use of an abstraction from the implementation of an abstraction. This means that a user of the 
abstraction can freely write procedures to manipulate the structures, just relying on the constructor and selectors, 
without any knowledge of how the structure is actually made. 

Slide 5.4.4 
Now, let's drive this point home with a more extended example, 
and remember that the point we are trying to drive home is the 
separation of the details of implementation of an abstraction 
from the use of that abstraction. We are going to place this solid 
barrier between the implementation and use of an abstraction, 
and we are going to see why having that barrier makes it much 
easier for us to create useful systems. 
The example we are going to consider is that of rational 
numbers and simple arithmetic operations on rationals. I'll 
remind you that a rational number is just a ratio of two integers, 
a numerator over a denominator. Associated with rationals are 

certain operations, for example we can add two rationals 
together, or multiply two rationals together, using the rules shown in the slide. 
Notice that we are really cheating here, and in fact I have put the operation on the rationals in red to distinguish that 
these are operations on rationals, as opposed to operations on integers. In fact, the rules for operations on rationals 
really decompose into simpler operations on integers. The operations on the right hand side are just operations on 
normal integers, followed by the creation of a rational (which is what the division sign denotes here). 
Now, let's see how we can use the ideas of data abstractions to build a system for manipulating rational numbers. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.5 
First, here's our data abstraction for rational numbers, which has 
the form we expect. It has a constructor, make-rat which 

takes two integers as input, and produces a rational, with some 
kind of internal representation that we haven't specified. We'll 
need selectors for getting back out the pieces of a rational. 
Notice the type associated with numer and denom. 

Most important is the contract between these parts. We can 
apply either of the selectors to the object created by the 
constructor, and be guaranteed to get back the appropriate piece, 
independent of how the object is actually represented. 
We will also have some operations that apply to rationals, such 
as rational addition or rational multiplication, and notice the 
types of these operations. They take two rationals as input, and produce a rational as output. 
Of course, we are going to separate all of this from the actual implementation of rationals. We should ideally be 
able to take any implementation of rationals that satisfies these contracts and build our own procedures to use those 
objects, just by relying on the constructor and selectors, and the contract between them. 

Slide 5.4.6 
Now let's think about actually building an implementation for 
rationals. How do we go about building an implementation that 
satisfies the contract defined in the previous slide, while 
providing all the pieces we laid out? 

Slide 5.4.7 
Well here is a simple implementation for rationals. We could 
use pairs as our underlying representation for rationals. Using 
this, we can easily construct the constructor and selectors for 
rationals, using cons, car and cdr. While this seems 

like an obvious way to build rationals, there is an important 
point here. In particular, we can enforce the contract that we 
require between make-rat, numer and denom by 

inheriting the contract between cons, car and cdr. At 

the same time, by relying on separate constructors and selectors 
for rationals, we shield the user from the implementation details, 
and we will see shortly why that is important. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.8 
In fact, here is one reason why this is important. Here is an 
alternative implementation of rationals, using list as the 

constructor, and car and cadr (which gets the second 

element of a list or the car or the cdr of the list) as the 

selectors. Does this satisfy our contract? Sure! Can a user tell 
which implementation we are using, the list or the pair version? 
No. The whole point of shielding the user from the 
implementation is to separate out those issues from the use of 
the abstraction. Why would we want alternative representations? 
We'll see some advantages shortly, but the key point here is that 
from the user's perspective each implementation is equally valid, 

as each satisfies the contract. 

Slide 5.4.9 
For example, here is a useful procedure for rationals, which will 
print out the value of a rational by separating the numerator and 
denominator by a "slash". The key question is can this procedure 
tell which implementation of rationals we are using? The 
answer, of course, is no. The procedure uses the selectors to get 
out the pieces, and cannot tell which implementation is being 
used so long as the right selector for that implementation is 
employed. 

Slide 5.4.10 
My operations for arithmetically manipulating rationals have a 
common form that we are going to see many times. Look at the 
first one carefully. The type contract says that given two 
rationals as input, we return a rational as output. The body of the 
procedure uses the selectors to extract out simpler objects, (in 
this case integers) then applies more primitive procedures to 
those objects (for example, multiplying integers and adding 
integers) then uses the constructor to glue these more primitive 
elements together into the complex object that needs to be 
returned. 
This is an important and common process. When manipulating 

data abstractions, we tend to use the selectors to get out simpler 
pieces, execute more primitive operations on those pieces, then use the constructor to glue the new pieces together 
into a new complex object. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.11 
Also, notice how types can help us reason through these 
procedures. Remember my contract for the selectors numer 
and denom, which said that given rationals as input, they 

would return integers. Thus in the body of these procedures I 
can see that I am safe in using integer arithmetic operations on 
the values returned by these selectors. And the contract for 
make-rat says that given two integers (as specified by the 

bodies of these procedures), we will return a rational number; 
hence my contract for these procedures is met, given that the 
contracts for the constructors and selectors are met. 

Slide 5.4.12 
Okay, let's use this little system. We can create a couple of 
simple rationals as shown, making one-half and three-
fourths to be the expected rationals. Let's define new to 

be the rational obtained by adding these two together, and we 
know by our previous work, that this should pull apart these two 
rationals, manipulate the underlying integer pieces, then 
reassemble a new rational that is the sum of these two. 

Slide 5.4.13 
This sounds pretty straightforward. What happens if we look at 
the pieces of new? The numerator is 10, and the denominator is 

8, so this rational is 10/8. But wait a minute! Shouldn't this be 
5/4? 
We would expect to get 5/4 here, but we got an equivalent, but 
not identical answer. If we look at the details of how we 
implemented rational addition, we see that in fact this is the 
answer we should get, since we simply take the cross products 
of the numerators and denominators and form their ratio. So in 
this case we get the "right" answer but not the "correct" answer 
(or the answer we were expecting). 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.14 
And in fact that is exactly the point of this whole exercise! 
Given that we can shield the user from the implementation of an 
abstraction, we should be able to fix this problem without 
affecting procedures created by the user. 
So what is the "problem" here? We are not "rationalizing" the 
rationals, that is, we are not reducing our constructed rationals to 
simplest terms. Suppose we were to compute the greatest 
common divisor between the numerator and the denominator, 
and reduce both by this term. This would give us a simpler 
rational. The point, however, is to do this in a way that is 
invisible to the user. 

Slide 5.4.15 
To do that, we will just use an implementation of gcd, which 

computes the greatest common divisor of two integers, as shown 
here. Let's use this to make "better" rationals. 

Slide 5.4.16 
... and here we have a choice. The first strategy is to use gcd
when we access the parts of a rational. Thus, we will construct 
rationals the normal way, just gluing together the parts. But 
when we ask for the parts of the rational, we will first compute 
the gcd of the numerator and denominator, then reduce the 
selector part by that amount. This will fix the problem we saw in 
the previous slide, always reducing a rational to its lowest 
possible form. 
But notice that since we built all of our operations just using the 
constructor and selectors, they will all continue to work, even 
with this change underneath them. That was exactly the point of 

separating the implementation of the abstraction from its use. So long as our constructors and selectors satisfy the 
contract, and so long as we always use them constructor and selectors in creating procedures to manipulate the 
abstractions (i.e. the only procedures that cross that abstraction barrier), we are free to create new implementations 
of the abstraction without having to recode any of those procedures. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.17 
And to drive that point home, here is an alternative way to create 
"rational" rationals. In this case, we will reduce rationals to 
lowest possible terms when we construct them, that is, when we 
apply make-rat. Here, the selectors can just be the 

straightforward implementation, since the constructor now takes 
care of the reduction. 
As before, the contract is still satisfied, and thus any procedure 
that uses these abstraction interfaces will still work without any 
change. 
Why have these alternatives? Well, if we expect to have a 
system that creates relatively few rationals but accesses them a 
lot, then for efficiency we should do the reduction at 
construction time. But if we expect the opposite load, we can use the other implementation. 

Slide 5.4.18 
To finish making this point, think about what would happen if 
we didn't use the data abstractions. For example, here is our 
version of +rat built on top of the abstraction. Suppose 

instead we had directly implemented this procedure by relying 
on knowledge that rationals were constructed as pairs, thus 
directly using cons, car and cdr. 

Slide 5.4.19 
...then here is that implementation. It looks exactly like the 
original ; we have simply stripped off the abstraction barrier. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 5.4.20 
But now, suppose we decide to implement the idea of 
incorporating the reduction by the gcd into the creation of 
rationals. In this case, we have to somehow figure out which 
parts of this code correspond to the numerator and denominator 
and replacing them with this grungy looking code. And it is not 
just the amount of work that is a problem here, it is that we have 
to do this with every procedure that manipulates rationals, and 
we have to do it in a way that guarantees we correctly identify 
the pieces to change. In the previous case, we just had to change 
the interface to the abstraction, not all the procedures that used 
them. 

Slide 5.4.21 
Thus the key point is the following: By isolating the details of an 
abstraction from the use of that abstraction, and by maintaining 
a discipline in which we never violate that abstraction barrier, 
we can cleanly separate changes to the implementation from use 
of the implementation. Thus, instead of having to change every 
procedure that uses rationals, we can obtain different systems 
just by changing the underlying representation and ensuring that 
the constructor and selectors (the only procedures that cross the 
abstraction barrier) satisfy the abstraction's contract. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


