
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 7.1

Slide 7.1.1
In the past few lectures, we have seen a series of tools for
helping us create procedures to compute a variety of
computational processes. Before we move on to more complex
issues in computation, it is useful to step back and look at more
general issues in the process of creating procedures.
In particular, we want to spend a little bit of time talking about
good programming practices. This sounds a little bit like
lecturing about "motherhood and apple pie", that is, a bit like
talking about things that seem obvious, apparent, and boring in
that everyone understands and accepts them. However, it is
surprising how many "experienced" programmers don't execute
good programming practices, and we want to get you started on
the right track.

Slide 7.1.2
Thus, in this lecture we are going to look briefly at several
methodological aspects of creating procedures: designing the
components of our code, debugging our code when it doesn't
run correctly, writing documentation for our code, and testing
our code. We will highlight some standard practices for each
stage, and indicate why these practices lead to efficient and
effective generation of code.

Slide 7.1.3
Let’s start with the issue of how to design code, given a
problem statement. There are many ways to do this, but most
of them involve some combination of the following steps:

• Design of data structures
• Design of computational modules
• Design of interfaces between modules

Once we have laid out the general design of these stages, we
follow by creating specific instantiations of the actual
components. We have not yet talked about data structures in
Scheme, and will return to this issue in a few lectures. For our
purposes here, the key thing to note is that when designing a
computational system, it is extremely valuable to decide what kinds of information naturally should be grouped
together, and to then create structures that perform that grouping, while maintaining interfaces to the structures that
hide the details. For example, one thinks naturally of a vector as a pairing of an x and y coordinate. One wants to

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

be able to get out the coordinates when needed, but in many cases, one thinks naturally of manipulating a vector as
a unit. Similarly, one can imagine aggregating together a set of vectors, to form a polygon, and again one can think
of manipulating the polygon as a unit. Thus, a key stage in designing a computational system is determining the
natural data structures of the system.

Slide 7.1.4
A second stage in designing a computational system is deciding
how best to break the computation into modules or pieces. This
is often as much art as science, but there are some general
guidelines that help us separate out modules in our design. For
example, is there part of the problem that defines a computation
that is likely to be used many times? Are there parts of the
problem that can be conceptualized in terms of their behavior,
e.g. how they convert certain inputs into certain types of
outputs, without worrying about the details of how that is done.
Does this help us focus on other parts of the computation? Or
said a bit differently, can one identify parts of the computation

in terms of their role, and think about that role in the overall computation, without having to know details of the
computation?
If one can, these parts of the computation are good candidates for separate modules, since we can focus on their
use while ignoring the details of how they achieve that computation.

Slide 7.1.5
Finally, given that one can identify data structures, whose
information is to be manipulated; and stages of computation, in
which that information is transformed; one wants to decide the
overall flow of information between the modules. What types
of inputs does each module need? What types of data does each
module return? How does one ensure that the correct types are
provided, in the correct order?
These kinds of questions need to be addressed in designing the
overall flow between the computational modules.

Slide 7.1.6
This is perhaps more easily seen by thinking about an example
– and in fact you have already seen one such example, our
implementation ofsqrt. When we implemented our

method for square roots, we actually engaged in many of these
stages. We didn’t worry about data structures, since we were
simply interested in numbers. We did, however, spend some
effort in separating out modules. Remember our basic
computation: we start with a guess; if it is good enough, we
stop; otherwise we make a new guess by averaging the current
guess, and the ratio of the target number and the guess, and
continue.

To design this system, we separated out several modules: the notion of averaging, the notion of measuring “good
enough”. We saw that some of these modules might themselves rely on other procedural abstractions; for example,

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

our particular version of “good enough” needed to use the absolute value procedure, though other versions might
not.

Slide 7.1.7
Once we had separated out these notions of different
computations: average and good-enough, we considered the
overall flow of information through the modules. Note by the
way that we can consider each of theses processes as a black
box abstraction, meaning that we can focus on using these
procedures without having to have already designed the specific
implementation of each.
Now what about the flow between these modules? In our case,
we began with a guess, and tested to see if it was good enough.
If it was, we could then stop, and just return the value of the
guess.

Slide 7.1.8
If it was not, then we needed to average the current guess and
the ratio of our target number to the guess.

Slide 7.1.9
And then we need to repeat the entire process, with this new
value as our new guess.
The point of laying out these modules, or black boxes, is that
we can use them to decide how to divide up the code, and how
to isolate details of a procedure from its use. As we saw when
we implemented our sqrt procedure, we can change details

of a procedure, such as average, without having to

change any of the procedures that use that particular
component. As well, the flow of information between the
modules helps guide us in the creation of the overall set of
procedures.

Thus, when faced with any new computational problem, we want to try to engage in the same exercise: block out

chunks of the computation that can be easily isolated; identify the inputs and outputs from each chunk; and lay out

the overall flow of information through the system. Then we can turn to implementing each of the units separately,

and testing the entire system while isolating the effects of each unit.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.1.10
A second key element to good programming practice is code
documentation. Unfortunately, this is one of the least well-
practiced elements – far too often programmers are in such a
hurry to get things written that they skip by the documentation
stage. While this may seem reasonable at the time of code
creation, when the design choices are fresh in the program
creator’s mind, six months later when one is trying to read the
code (even one’s own), it may be very difficult to reconstruct
why certain choices were made. Indeed, in many commercial
programming settings, more time is spent on code maintenance
and modification than on code generation, yet without good
documentation it can be very difficult or inefficient to

understand existing code and change it.
As well, good documentation can serve as a valuable source of information about the behavior of each module,
enabling a programmer to maintain the isolation of the details of the procedural abstraction from the use of that
abstraction. This information can be of help when debugging procedures.

Slide 7.1.11
As with designing procedural modules, the creation of good
documentation is as much art as science. Nonetheless, here are
some standard elements of well-documented code. We are
going to illustrate each of these with an example.

Slide 7.1.12
First, describe the goal of the procedure. Is it intended to part
of some other computation (as this helper function is)? If so,
what is the rough description of the process? Note that here we
have been a bit cryptic (in order to fit things on the slide) and
we might well want to say more about “successive refinement”
(though we could defer that to the documentation under the
improve procedure). We also identify the role of each

argument to the procedure.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.1.13
Second, describe the types of values used in the computation.
In this case, the inputs or parameters are both numbers, and the
returned value is also a number. Actually, if we were more
careful here, we would require that X be a positive number, and
we would place a check somewhere to ensure that this is true.

Slide 7.1.14
Third, describe constraints, either desired or required, on the
computation. Here, we know that squaring the guess should get
us something close to the target value, although we really don’t
guarantee this until we reach the termination stage.

Slide 7.1.15
And fourth, describe the expected state of the computation and
the goal at each stage in the process. For example, here we
indicate what good-enuf? should do, namely test if

our approximation is sufficiently accurate. Then we indicate
that if this is the case, we can stop and what value to return to
satisfy the contract of the entire procedure. And we indicate
how to continue the process, though we could probably say a
bit more about what improve should do.

Notice how we can use the documentation to check some
aspects of our procedure’s “contract”. Here, we have indicated
that the procedure should return a number. By examining the
if expression, we can see that in the consequent clause, if the input parameter guess is a number, then we

are guaranteed to return a number. For the alternative clause, we can use induction to reason that given numbers as
input, we also return a number, and hence the entire procedure returns a value of the correct type.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.1.16
In general, taking care to meet each of the stages when you
create code will often ensure an easier time when you have to
refine or replace code. Getting into the habit of doing this
every time you write something, even if you are only minutes
away from some problem set deadline, will greatly improve
your productivity!

6.001 Notes: Section 7.2

Slide 7.2.1
While we would like to believe that the code we write will
always run correctly, the first time we try it, experience shows
that this is a fortunate happenstance. Typically, especially with
complex code, things will not work right, and we need to debug
our code. Debugging is in part an acquired skill – with lots of
practice you will develop your own preferred approach. Here,
we are going to describe some of the common sources of errors
in code, and standard tools for finding the causes of the errors
and fixing them.

Slide 7.2.2
A common and simple bug in code arises when we use an
unbound variable. From the perspective of Scheme, this
means that somewhere in our code we try to reference (or look
up the value of) a variable that does not have one. This can
occur for several reasons. The simplest is that we mistyped – a
spelling error. The solution in this case is pretty
straightforward – simply search through the code file using
editor tools to find the offending instance and correct it.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.2.3
Sometimes, however, we are using a legal variable (that is, one
that we intended to hold some value) but the evaluator still
complains that this variable is unbound. How can that be?
Remember that in Scheme a variable gets bound to a value in
one of several ways. We may define it at “top level”, that is, we
may directly tell the interpreter to give a variable some value.
We may define it internally within some procedure. Or, we
may use it as a formal parameter of a procedure, in which case
it gets locally bound to a value when the procedure is applied.
In the last two cases, if we attempt to reference the variable
outside the scope of the binding, that is, somewhere outside the
bounds of the lambda expression in which the variable is being
used, we will get an unbound variable error. This means that we have tried to use a variable outside its legal
domain, and we need to correct this. This probably means we have a coding error, but we can isolate the problem
either by searching for instances of the variable in the code file, or by using the debugger.

Slide 7.2.4
So what does a debugger do to help us find errors? Each
programming language will have its own flavor of debugger;
for an interpreted language like Scheme, the debugger actually
places us inside the state of the computation. That is, when an
error occurs, the debugger provides us access to the state of the
computation at the time of the error, including access to the
values of the variables within the computation. Moreover, we
can step around inside the environment of the computation: we
can work back up the chain of computational steps, examining
what values were produced during reductions (where
computation is reduced to a simpler expression), and examining

what values were produced during substitutions (where the computation was converted to a simpler version of
itself).

Slide 7.2.5
For example, here is a simple procedure, which we have called
with argument 2. Notice what happens when we hit the
unbound variable error and enter the debugger. We are placed
at the spot in the computation at which the error occurred. If
we choose to step back through the chain of evaluations, we can
see what expressions were reduced to get to this point, and what
recursive versions of the same problem were invoked in
reaching this stage.
In this case, we note that foo was initially called with
argument 2, and after a reduction through an if expression,
we arrived at an expression that contained within it a simpler
version of the same problem. This reduction stage repeated again, until we apparently reached the base case of the
if expression, where we hit the unbound variable. We can see in this simple case that our unbound error is
coming from within the body of foo and is in the base case of the decision process.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.2.6
A second class of errors deals with mistakes in syntax –
creating expressions that do not satisfy the programming
language’s rules for creating legal expressions. A simple one
of these is an expression in which the wrong number of
arguments is provided to the procedure. If this occurs while
attempting to evaluate the offending expression, we will usually
be thrown into the debugger – a system intended to help us
determine the source of the error. In Scheme, the debugger
provides us with information about the environment in which
the offending expression occurred. It supplies tools for
examining the values associated with variable names, and for
examining the sequence of expressions that have been

evaluated leading up to this error. By stepping through the frames of the debugger, we can often isolate where in
our code the incorrect expression resides.

Slide 7.2.7
A more insidious syntax error occurs when we use an
expression of the wrong type somewhere in our code.
If we use an expression whose value is not a procedure as the
first subexpression of a combination, we will get an error that
indicates we have tried to apply a non-procedure object. As
before, the debugger can often help us isolate the location of
this error, though it may not provide much insight into why an
incorrect object was used as a procedure. For that, we may
have to trace back through our code, to determine how this
value was supplied to the offending expression.
The harder error to isolate is one in which one of the argument
expressions to a combination is of the wrong type. The reason
this is harder to track down is that the cause of the creation of an incorrect object type may have occurred far
upstream, that is, some other part of our code may have created an incorrect object, which has been passed through
several levels of procedure calls before causing an error. Tracking down the original source of this error can be
difficult, as we need to chase our way back through the sequence of expression evaluations to find where we
accidentally created the wrong type of argument.

Slide 7.2.8
The most common sorts of errors, though, are structural ones.
This means that our code is syntactically valid – composed of
correctly phrased expressions, but the code does not compute
what we intended, because we have made an error somewhere
in the code design. This could be for a variety of reasons: we
started a recursive process with the wrong initial values, or we
are ending at the wrong place, or we are updating parameters
incorrectly, or we are using the wrong procedure somewhere,
and so on. Finding these errors is tougher, since the code may
run without causing a language error, but the results we get are
erroneous.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.2.9
This is where having good test cases is important. For
example, when testing a recursive procedure, it is valuable to
try it using the base case values of the parameters, to ensure
that the procedure is terminating at the right place, and
returning the right value. It is also valuable to select input
parameter values that sample or span the range of legal values –
does it work with small values, with large values; does
changing the input value by a small increment cause the
expected change in output value?

Slide 7.2.10
And what do we do if we find we have one of these structure
errors? Well, our goal is to isolate the location of our
misconception within the code, and to do this, there are two
standard tools.
The most common one is to use a print or display expression –
that is, to insert into our code, expressions that will print out for
us useful information at different stages of the computation.
For example, we might insert a display expression within the
recursive loop of a procedure, which will print out information
about the values of parameters. This will allow us to check that
parameters are being updated correctly, and that end cases are

correctly seeking the right termination point. We might
similarly print out the values of intermediate computations within recursive loops, again to ascertain that the
computation is operating with the values we expect, and is computing the values we expect.
A related tool, supplied for example with Scheme, is a tracer. This allows us to ask the evaluator to inform us
about the calling conventions of procedures – that is, to print out the values of the parameters supplied before each
application of the procedure we designate, and the value returned by each such procedure call. This is similar to
our use of display expressions, but is handled automatically for us. It applies only to parameters of procedure calls,
however, so that if we want to examine for detailed states of the computation, we need to fall back on the display
tactic.
In some cases, it may help to actually walk through the substitution model, that is, to see each step of the
evaluation. Many languages, including Scheme, provide a means for doing this – in our case called the stepper.
This is a mechanism that lets us control each step of the substitution model in the evaluation of the expression. It is
obviously tedious, but works best when we need to isolate a very specific spot at which an error is occurring, and
we don’t want to insert a ton of display expressions.
Perhaps the best way to see the role of these tools is to look at an example, which we do next.

6.001 Notes: Section 7.3

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.3.1
Let’s use an example of a debugging session to highlight these
ideas. This will be primarily to fix a structural error, but we
will see how the other tools come into play as we do this.
Suppose we want to compute an approximation to the sine
function. Here is a mathematical approximation that will give
us a pretty good solution. So let’s try coding this up.

Slide 7.3.2
So here is a first attempt at some code to do this. We will
assume that fact and small-enuf? already

exist. The basic idea behind this procedure is quite similar to
what we did for square roots. We start with a guess. We then
see how to improve the guess, in this case by computing the
next term in the approximation, which we would like to add in.
If this improvement is small enough, we are done and can
return the desired value. If not, we repeat the process with a
better guess, by adding in the improvement to the current guess.

Slide 7.3.3
Now, let’s try it out on some test cases. One nice test case is
the base case, of x equal to 0. That clearly works. Another
nice test case is when x is equal to pi, where we know the result
should also be close to 0. Oops! That didn’t work. Nor does
the code work for x equal to pi half. Both of these latter cases
give results that are much too large.

Slide 7.3.4
Okay, we need to figure out where our conceptual error lies.
Let’s try to isolate this by tracing through the computation. In
particular, we will add some display expressions that will show
us the state of the computation each time through the recursion.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.3.5
And let’s try this again. Here we have used the test case of x
equal to pi. And we can see the trace of the computation. If we
compare this to the mathematical equation we can see one
problem. We really only want terms where n is odd, but clearly
we are getting all terms for n. So we need to fix this. Most
likely this is because we are not changing our parameters
properly.

Slide 7.3.6
So here is the correction. We will need to increment our
parameter by 2 each time, not by 1 – an easy mistake to make,
and to miss!

Slide 7.3.7
So let’s try this again. Hmm. We have gotten better as we are
only computing the odd terms for n, but we are still not right. If
we look again at the mathematical equation, we can see that we
should be alternating signs on each term. Or said another way,
the successive approximations should go up, then down, then
up, then down, and so on. Note that we could have also spotted
this if we had chosen to display the value of next at each

step.
So we need to keep track of some additional information, in this
case whether the term should be added or subtracted from the
current guess.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.3.8
Well, we can handle that. We add another parameter to our
helper procedure, which keeps track of whether to add the term
(if the value is 1) or whether to subtract the term (if the value is
1). And of course we will need to change how we update the
guess, and how we update the value of this parameter.

Slide 7.3.9
Oops! We blew it somewhere! We could enter the debugger to
locate the problem, but we can already guess that since we
changed the aux procedure, that must be the cause.

Slide 7.3.10
And clearly the solution is to make sure we call this procedure
with the right number of arguments. Notice that in this case it
is easy to spot this error, but in general, we should get into the
habit of checking all calls to a procedure when we alter its set
of parameters.

Slide 7.3.11
Now, if we try this on the test case of x equal pi, this works!
But if we try it on the test case of pi half, it doesn’t! The
answer should be close to 1, but we are getting something close
to -1. Note that this reinforces why we want to try a range of
test cases – if we had stopped with x equal pi, we would not
have spotted this problem.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.3.12
Here is the bug. We started with the wrong initial value – a
common error. By fixing this, we can try again and …

Slide 7.3.13
… finally we get correct performance. Note how we have used
printing of values to isolate changes, as well as using the
debugger to find syntax errors.

Slide 7.3.14
In general, we want you to get into the habit of doing the same
things. Developing good programming methodology habits
now will greatly help you when you have to deal with large,
complex, bodies of code. Good programming discipline means
being careful and thorough in the creation and refinement of
code of all sizes and forms, so start exercising your
“programming muscles” now!

6.001 Notes: Section 7.4

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.4.1
One other tool that we have in our armamentarium of
debugging is the use of types. In particular, type specifications,
that is, constraints on what types of objects are passed as
arguments to procedures and what types of objects are returned
as values by procedures, can help us both in planning and
designing code, and in debugging existing code.
Here, we are going to briefly explore both of these ideas, both
to demonstrate why careful program practice can lead to
efficient generation of robust code; and to illustrate why
thinking about types of procedures and objects is a valuable
practice.

Slide 7.4.2
To motivate the idea of types as a tool in designing code, let's
consider an example. Suppose we want to create a procedure,
let's call it repeated, that will apply any other procedure

some specified number of times. Since this is a vague
description, let's look at a specific motivating example.
We saw earlier the idea that we could implement multiplication
as a successive set of additions, and that we could implement
exponentiation as a successive set of multiplications. If we look
at these two procedures, we can see that there is a general
pattern here. There is a base case value to return (0 in one case,
1 in the other). And there is the idea of applying an operation to

an input value and the result of repeating that process one fewer times. Repeated is intended to capture that

common pattern of operation.

Slide 7.4.3
So here is what we envision: we want our repeated
procedure to take a procedure to repeat, and the number of
times to repeat it. It should return a procedure that will actually
do that, when applied to some value. Here we can see that the
procedure being applied would change in each case, and the
initial value to which to apply it would change, but otherwise
the overall operation is the same.
The question is: how to we create repeated, and why

does the call to repeated have that funny structure, with

two open parens?

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.4.4
First, what is the type of repeated?

Well, from the previous slide, we know that as given, it should
take two arguments. The first should be a procedure of one
argument. We don't necessarily know what type of argument
this procedure should take (in the two examples shown, the
input was a number, but we might want to be more general than
this). What we do know, is that whatever type of argument this
procedure takes, it needs to return a value of the same type,
since it is going to apply that procedure again to that value.

Hence the first argument to repeated must be a procedure

of type A to A.

The second argument to repeated must be an integer, since we can only apply an operation an integer

number of times. Actually, it should probably be a non-negative integer.

And as we argued, the returned object needs to be a procedure of the same type: A to A because the idea is to

use repeated recursively on itself.

Slide 7.4.5
Okay, now how does this help us in designing the actual

procedure?

We know the rough form that repeated should take. It

should have a test for the base case, which is when there are no

more repetitions to make. In the base case, it needs to do

something, which we have to figure out. And in the recursive

case, we expect to use repeated to solve the smaller

problem of repetition, plus some additional operations, which

we need to figure out.

Slide 7.4.6
For the base case, what do we know?
We know that by the type information, this must return a
procedure of a single argument that returns a value of the same
type.
We also know that if we are in the base case, there is really
nothing to do. We don't want to apply our procedure any more
times. Hence, we can deduce that we need to return a procedure
that serves as the identity: it simply returns whatever value was
passed in.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.4.7
Now, what about the recursive case?

Well, the idea is to apply the input procedure to the result of

repeating the operation n-1 times. How do we use this idea to

figure out the correct code?

First, we know that whatever we write must have type A to

A by the specification of repeated.

Slide 7.4.8
Next we know that we want to apply the input procedure
proc to the result of solving the same problem, n-1 times.

So we ought to have something that has these pieces in it.

Slide 7.4.9
But let's check the types. We know that repeated has type

A to A, and the proc expects only an argument of type

A. So clearly we need to apply repeated to an argument

before passing the result on to proc. Hence we have the form

shown.
Note how this fairly complex piece of code can be easily
deduced by using types of procedures to determine interactions.
Of course, to be sure we did it right, we should now test this on
some test cases, for example, by running mul or exp on

known cases.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.4.10
A second way that types can help us is in debugging code. In
particular, we can use the information about types of arguments
and types of return values explicitly to check that procedures
are interacting correctly. And in some cases, where there are
constraints on the actual values being returned, we can also
enforce a check.

Slide 7.4.11
As an example, here is our sqrt code from before. One of

the conditions we have is that the input arguments need to be
numbers. And we could check that numbers are being correctly
passed in by inserting an explicit check. In this case, it is
probably redundant since the only code that calls sqrt
helper is itself, but in general, when multiple procedures

might be involved, you can see how this check is valuable.
Note that one can insert this check only when debugging, as a
tool for deducing what procedure is incorrectly supplying
arguments. But one can also use it regularly, if you want to
ensure robust operation of the code.

Clearly one could add a check on the return value in a similar fashion.

Slide 7.4.12
But there are other things one could use to ensure correct
operation. For example, the number whose square root we are
seeking should be a positive number, and we could check that
as shown.
Thus we see that types also serve as a useful tool on good
programming methodologies.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 7.4.13
To summarize, we have seen a set of tools for good

programming practices: ways of designing code, debugging

code, evaluating code, and using knowledge of code structure

to guide the design.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

