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6.001 Notes: Section 30.1 

Slide 30.1.1 
In this lecture, we are going to go back to several themes that 
we have been exploring over the past few weeks, and stitch 
them together into a single demonstration. We are going to see 
how quickly we can describe and control a complex system, by 
using the tools we have been building for dealing with 
abstractions. 

Slide 30.1.2 
The themes we are going to utilize include the following. 
We are going to build on the idea of data abstraction, especially 
the idea of separating the use of a data structure from the details 
of its implementation. We are going to see how that abstraction 
barrier enables us to quickly describe complex structures 
without getting lost in their details, and how to focus on the use 
of such structures as entire units, while being assured that the 
interior details will be handled correctly. 
We are going to also build on the idea of procedural abstraction, 
especially the idea of capturing common patterns inside a black 
box, and using such abstractions to capture more complex 
patterns. 

And we are going to build on the idea of means of combination, that is, the idea that we can create simple methods 
for combining primitive objects into complex things, then treating the result as a primitive within a still more 
complex thing. This will allow us to control complexity by utilizing a modular decomposition of the problem 
domain. 
So our goal is to pull these pieces together to build a new language, one that is specifically designed for a particular 
problem domain. 
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Slide 30.1.3 
So what problem domain should we use? Well, we are going to 
create a language that describes pictures such as this famous 
one by M.C. Escher, called "quadratlimit" or "square limit". Not 
only will our language let us describe the process by which 
such pictures can be created, it will also let us create our own 
variations on this theme, leading to pictures that have a 
resemblance to the kind of elegant structure shown here in this 
Escher print. 

Slide 30.1.4 
So how do we describe such a system? Well, let's start with a 
simpler example. Here is a picture of my friend George. At an 
abstract level, what kinds of things would I like to do with 
George? 

Slide 30.1.5 
First, I might like to flip him, either about the vertical axis or 
about the horizontal one. By this I mean literally taking this 
portrait of George and spinning it 180 degrees out of the plane, 
then setting it back down. 

Slide 30.1.6 
Alternatively, I might like to rotate him about an axis coming 
out the picture, causing him to do a cartwheel as I rotate his 
picture by increments of 90 degrees. Conceptually this is easy. 
If I think of George as a picture, I can easily envision grabbing 
the whole picture and doing something to it. But how do I do 
this in practice? 
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Slide 30.1.7 
Here is one straightforward way. Assume that we have some 
primitive drawing method called 

draw-line,


that takes a rectangle as input, and a set of coordinate values 
(e.g. x and y start point, and x and y end point), and draws a 
line from start to end within that rectangle. Note, details of the 
rectangle are irrelevant, we are just burying them beneath the 
abstraction. Thus, the first expression would draw a line starting 
.25 units to the right of the lower left hand corner, and ending at 
a point .35 units to the right and .5 units up from the lower left 

hand corner.

Given that, here is a definition of George. Note what this does. Each expression gives a start and end point, 

relative to the origin of the rectangle, and draw-line then sketches the line between those points.


Blech! This is far too specific, right? Given this definition of George, how do I create a rotated George or a flipped 

George? This is not obvious, and for an important reason. Here I have intertwined the action of drawing with the 

data representing George. I have not separated those actions, and moreover, I have chosen a very low-level 

representation for the elements of George. I really need to isolate these two aspects if I am to have any hope of 

drawing different pictures of George.


Slide 30.1.8 
So let's fix this. First, we need some data abstractions, to isolate 
points from the use of points. What is a point or a vector? It is 
just a way of gluing together an x coordinate and a y 
coordinate, so we can create an abstraction for this. This has a 
constructor (called make-vect) and two selectors (called 

xcor and ycor). 

Slide 30.1.9 
Note that there is an inherent contract between these two 
components: whatever method we use to glue things together in 
the constructor, we can get the parts back out using the 
selectors, but the details of how we do that don’t matter to 
things that simply want to use these objects. 
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Slide 30.1.10 
Similarly, we can glue two endpoints or vectors together to 
create a line segment. This again is a data abstraction, with a 
contract between the constructor (make-segment) and 

the selectors (start-segment and end-
segment). 

So this gives us a way of abstracting vectors and segments. 
Note the key point: I don't need to know the details of how 
vectors and segments are built, I just rely on the contract. This 
means we could think of George in terms of the appropriate 
elements, namely lines, rather than details of how those lines 
are represented. 

Slide 30.1.11 
So here is George in this format. Now, it looks like we have just 
put some window dressing around the line segments. But hang 
on, as we will see how treating George as an abstraction is 
going to make life much easier for us. In particular, note that 
here we have created an abstraction for the points, and a 
separate abstraction for the line segments. Moreover, these are 
now defined with respect to some coordinate frame; they are 
not actually being drawn yet. So we have also separated the act 
of drawing from the representation of the data to be drawn. 

Slide 30.1.12 
First though, how could we actually build these vectors and 
segments? 
Well, you saw this in the last lecture. For pairs of things (i.e. 
things that come naturally in twos), we could just use a cons 
cell or a pair. And for larger collections, we could use lists. And 
of courses lists are just sequences of cons cells glued together 
into a spine, with the elements hanging off of it. 
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Slide 30.1.13 
Remember that there are several important properties to pairs 
and lists. They have a contract between constructor and 
selectors. They have the property of closure, that is, that the 
result of creating an instance of an object can itself be used to 
create a new object. 
This is worth exploring a bit more carefully. So what is a list? It 
is a sequence of pairs, ending in the special symbol nil, or 
empty list. Thus, consing anything onto a list gives you a new 
sequence of pairs, ending in the empty list, hence a list. 
Similarly, taking the cdr of a sequence of pairs ending in the 
empty list results in a shorter sequence of pairs ending in the 
empty list, and hence is a list. Thus lists are closed under the 
operations of cons and cdr. 
Note that this is not quite right. What happens if you try to take the cdr of nil? In MIT Scheme you get an error, but 
by this definition it would be better to just return the empty list. 
Also notice that it would really be better to have distinctive operations for lists, as compared to pairs, e.g. adjoin, 
first and rest, instead of cons, car and cdr, to distinguish operations on lists from operations on pairs. For historical 
reasons, we stick with the latter, even though the better would be conceptually much cleaner. 

Slide 30.1.14 
So let's use this to build a specific version of our abstraction. 
Note how our abstraction nicely inherits its contract from the 
underlying contract for pairs and lists. And note how points 
create a nested structure underneath lines. That is a line 
segment is a list of two elements, each of which points to 
another abstraction, namely a pair representing a vector. 

Slide 30.1.15 
Okay, now let's put the pieces together. George is just defined 
as a collection (a list in this case) of line segments. All we need 
to do is take a rectangle or frame (which is just a pair of 
orthogonal line segments), and draw these segments within that 
rectangle. 
But as we start thinking towards the kinds of operations we did 
on George earlier, we would like to be able to draw George in 
different frames. So we would like to be able to define any 
frame, either of different size, or even non-orthogonal, and 
draw George inside of it. What does that mean? Ideally, we 
could take George (defined as a set of segments within a frame) 
and stretch those segments to fit within a new frame. 
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Slide 30.1.16 
Here is a nice way to build that abstraction. We'll create our 
picture within the constraints of a default rectangle, of size 1. 
That is, our initial set of segments will have the property that 
their x and y values all lie between 0 and 1. Imagine those 
segments being attached to a sheet of rubber that fits over a 
square frame as shown in the lower left. 
Then, if we provide some other rectangle, which may be shifted 
over from the first, and which may have a different aspect ratio, 
we want our method for drawing to take that sheet of rubber 
and stretch it to fit over the new rectangle’s frame. 

Slide 30.1.17 
Well that is fine, we just need another data structure. Note that 
this one is built out of vectors, so we are constructing another 
abstraction within our system. In particular, a rectangle is now 
defined to have a vector to its origin or starting point, and two 
vectors that specify the extent of the horizontal and vertical 
axes of the frame. 

Slide 30.1.18 
And then a picture is just a procedure that takes a rectangle (one 
of these abstractions) and does some stuff to draw lines within 
that rectangle. We will return shortly to what this actually 
does. 

Slide 30.1.19 
Now a key issue in building data abstractions is that it should 
insulate the details of the abstraction from the actual use of the 
abstraction. To stress this, suppose we make the following 
change to our data structures: we change make-vect to 

list, and we change ycor to cadr, which is short 

for (car (cdr .)). Note that is version still 

satisfies our contract on the abstraction. What else has to 
change inside of our system? 
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Slide 30.1.20 
Absolutely nothing! 
This is a key point about the data abstractions. The modularity 
of the abstraction isolates changes within the abstraction from 
the use of the abstraction. Hence any code that uses these 
abstractions will still run, even though the details within the 
abstraction have changed. 

Slide 30.1.21 
Okay, so we can create the pieces of George. But how do we 
actually draw? 
This is where the weird part comes in! We could just create a 
procedure to draw line segments. But we want the flexibility of 
being able to use any frame to draw the same picture. 
So we make a picture be a procedure!! This definitely sounds 
weird!! A picture sounds like it should be a data structure, a 
collection of geometric entities, but we are going to make it a 
procedure. Inside the procedure will reside those geometric 
entities, but that procedure will take as input a rectangle, then 
scale the elements to fit within that rectangle, and display the 
result. 
This seems odd, right? In principle, a picture is data, but we are choosing to represent it as a procedural abstraction 
that captures the process of drawing data in a frame. 
Why? Primarily for flexibility. In this way, we have one procedure with inherent data, but it provides an infinite 
number of versions of the picture. This abstraction allows for very easy manipulation of a picture structure to get 
new versions. So let's see how that happens! 

Slide 30.1.22 
First, we need to manipulate the pieces of a picture, so that 
means we need ways to manipulate vectors themselves. Let's 
look at some standard things we would like to do with vectors. 
We would like to take two vectors and add them together to get 
a new vector. And we would like to stretch or scale a vector by 
scaling its x and y coordinates by the same amount. 
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Slide 30.1.23 
So here is code to do this. For example, the first procedure takes 
two vectors and adds them together to get a new vector. It does 
this by extracting the x and y components of the vectors, adding 
them separately and then creating a new vector with those 
values for the components. The second procedure takes a 
vector and a number, and stretches (or shrinks) the vector by 
that amount. 
Rotation is just a matter of applying some trigonometry to the 
vector to create a new vector. 
A key thing to observe is how we inherit closure from the 
underlying representation. For example, in +vect, v1 could be 
the result of some other +vect operation. 

Slide 30.1.24 
Also note the form: we extract the pieces, do some simpler 
operations, and then construct a new version of the same type of 
object. 
And notice how this nicely isolates the changes beneath the 
abstraction barrier. If we change the abstraction implementation 
for vectors, none of these procedures need to change!! 

Slide 30.1.25 
Now we can use all these pieces to assemble a picture. The 
basic idea is to take a list of segments (defined as pairs of 
vectors using our nice data abstraction). This then gets passed 
to a procedure that generates a picture, that is, a new procedure 
with the data embedded within it. 
Note that this make-picture procedure is a higher 

order procedure, it takes as input a list and creates as output a 
new procedure. 
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Slide 30.1.26 
To use a picture, we simply give it a rectangle (as a data 
abstraction) and the picture procedure will then display it on the 
screen inside that rectangle. 

Slide 30.1.27 
So here is the code for doing that. 

Note that this is a higher order procedure: it takes a list as input, 

and returns a procedure as output. That procedure when given a 

rectangle as input, will ask each of the lines segments in the 

data structure embedded within the procedure to draw itself, 

appropriately scaled within the rectangle. For-each is 


just like map, except that it doesn't accumulate an answer as it 

walks down the list applying its internal lambda to each 

element. 

The key thing to note is how we are using standard list 

operations to capture this procedural abstraction of a picture. 

Slide 30.1.28 
Just to be careful, what should draw-line do? The 

idea is that this procedure is given a rectangle, which contains 
within it an origin vector, an x axis and a y axis. Draw-line 
takes an x and y coordinate value of a point (defined in a 
canonical rectangle), and scales the new horizontal and vertical 
axes by those amounts, and then shifts this by the offset to the 
origin, using the vector algebra shown. Doing this for two 
points automatically shifts and stretches a line to fit within the 
new rectangle. 
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Slide 30.1.29 
So, just to complete this idea, here is a better definition of 
George. 

Slide 30.1.30 
So what is the big deal? Well, George is now both a data 
abstraction (george-lines: a set of segments) and a 

procedure (g: a process for drawing those lines within a 

rectangle). Note that g contains the information about the 

segments within it as part of the procedural abstraction 
This makes it quite easy to use George as a building block in 
other pictures, and that is what we want to turn to next. 
Again, remember what a picture is: it's a procedure that takes a 
rectangle as input, and scales its line segments to draw within 
the rectangle (or frame). 

So we can easily generalize this idea to arbitrary frames, not 
just rectangular ones. Remember that a frame is just a set of three vectors, an origin and two axes, so by picking 
vectors for axes that are not orthogonal, we get skewing for free. 
To rotate a picture, we can just shift the axes, in particular, make the old horizontal axis vertical, and the old 
vertical axis the negative horizontal axis. If we do this, then we can see that drawing the picture within this new 
coordinate frame will accomplish the task of rotating the original picture. 

Slide 30.1.31 
And we can easily build code to do this. Note what this does, in 
a very cool way. Rotate90 returns a picture, that is a procedure 
of one argument, a rectangle. That new picture asks the old 
picture to draw itself, but in a new frame. And that frame 
simply comes about by creating a new origin, a new horizontal 
axis and a new vertical axis, just as we sketched. 
Also notice how nicely the data abstractions preserve the 
cleanliness of this code. It is very easy to see what is being done 
here. 
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Slide 30.1.32 
Of course there is nothing that says we can only deal with a 
single picture. Together simply asks two pictures to draw 
themselves in the same frame. It does so since each picture is a 
procedure that draws within a rectangle, and by supplying the 
same rectangle to each picture, we will get a combination of the 
two. 

Slide 30.1.33 
And here is an example in action! 

Slide 30.1.34 
Now, suppose we have two pictures that draw different things, 
and we want to combine them. In other words, how do we 
create a means of combination for pictures? 
Suppose we start with two different pictures that draw different 
things. Since a picture is a procedure that takes a frame and 
draws into it, we could give each of these different pictures a 
different frame. Specifically, if we pick a division point and 
split a frame into two parts, each of those parts can act like a 
frame, and we can draw different pictures into each part. Thus, 
beside should draw two pictures, scaled appropriately, 

next to one another, and above should do the obvious thing 

in the vertical direction. 
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Slide 30.1.35 
Conceptually, an operation like beside has within it two 

picture procedures. When given a rectangle, each picture draws 
itself in its share of the rectangle, thus combining two primitive 
pictures into a more complex one. 

Slide 30.1.36 
And here is the code to do it. Let’s step through beside to 

see what it does. Beside takes two pictures (remember 

these are procedures that draw in rectangles) and a ratio. It 
creates a new frame by simply shrinking the horizontal axis by 
that ratio, and otherwise uses the same origin and vertical axis. 
It then asks the first picture to draw a version of itself in that 
frame (which will result in a picture that has been squeezed 
along the horizontal axis). Beside creates a second frame, 

with the same vertical extent, and a horizontal extent that is set 
up to fill the remainder of the original frame. Here, however, 

we need to shift the origin, or starting point, over to the end of the first frame, hence the bit of vector algebra in the 
second rectangle. And then we ask the second picture to draw itself within this frame. 
Note the key point here. We can treat pictures as black box abstractions! Thus we can combine pictures with other 
pictures without worrying about the details of the pictures. Note how the abstraction simply allows us to think 
about the frames of pictures as vector manipulations, and the pictures themselves come along for free. 
Moreover, pictures have the property of closure. Thus we can use our combiners (things like above, beside) to 
produce new abstractions that can then be used as primitives within some other combination. 

Slide 30.1.37 
Here is an example of George and his little brother. Notice the 

elegant combination here. Nowhere is there a specification of 

the line segments; we are simply taking an abstract notion of a 

picture and saying: given an empty picture and a picture of 

George, above will create a new picture (notice the higher 


order procedure abstraction). That procedure can then be 

combined with George in a beside fashion to create 


another picture. 

Notice how the closure property nicely guarantees that 

combining pictures in this way provides new pictures that can 

further be combined. 
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Slide 30.1.38 
So let's see how far we can push this idea. Here is another 
operation on a picture, flipping about a vertical axis. Notice 
again how flip takes in a picture (a procedure), creates a new 
picture procedure, and does it by constructing a new rectangle 
out of the original one by using the appropriate abstractions. 

Slide 30.1.39 
So we can use this to put things together in interesting ways. 

Slide 30.1.40 
And that includes more complex combinations built on top of 
combinations. 
Trace through the procedures to check that these take the right 
inputs and give back the right output. 
And again notice how closure is nicely allowing us to combine 
complex things, then treat the result as a primitive and combine 
again. 

Slide 30.1.41 
So how about recursive application of these ideas of combining 
things? Well, one interesting way would be to draw a picture in 
some fraction of a frame, then draw it in the same fraction of 
the remaining part of the frame, and so on, some number of 
times. This would just be a recursive application of the same 
idea. 
Note how the code accomplishes this. Up-push takes a 

picture as input, and returns a picture. We can see this 
inductively by noticing that the base case returns a picture. For 
the recursive case, if we inductively assume that smaller 
versions of this procedure return pictures, then we see that 
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above will also return a picture. 

Slide 30.1.42 
So we can apply this idea to George. 

Slide 30.1.43 
And we can do the same thing by pushing things to the side. 

Slide 30.1.44 
And we can generalize this to push both up and out. Look at the 
code carefully to note how pictures are combined using higher 
procedures to return pictures as needed. 
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Slide 30.1.45 
This lets us push George into a corner. 

Slide 30.1.46 
Next we can put copies of things together. Here we are using 
the operation of rotate90 to rotate pictures different amounts. 
Repeated is just a higher order procedure returns a procedure 
that applies its first argument (a procedure) a specified number 
of times in succession (the second argument) to the supplied 
argument. Again, trace through the code to see how elegantly 
we have captured the idea of making copies of four different 
pictures, rotated appropriate amounts. 

Slide 30.1.47 
And ultimately, with a simple combination of the things we 
started with, pushed into a corner, and replicated in four 
different corners, we get interesting combinations like the one 
illustrated here. 

Slide 30.1.48 
For comparison, here was our original goal. We aren't quite as 
good an artist as Escher, but note how we have captured the 
same recursive behavior of Escher's print in our example. 
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Slide 30.1.49 
Now, is there anything special about drawing line segments? Of 
course not. This is just another abstraction issue. So we could 
instead take a picture, and use exactly the same methods to 
paint that picture onto a frame. For example, we can get the 
following, using portraits of Einstein, Escher and Mona Lisa. 

Slide 30.1.50 
Now, what is the point of all this? 
I claim that what we have done is build a new language: a 
language for describing and thus creating pictures in the style of 
Escher. This language is embedded within Scheme, and hence 
inherits the underlying power of Scheme. But at the same time, 
there are some nice analogies between the two languages. 
First, what are the primitives of Scheme. Here, we have the 
standard things: primitive elements like numbers, strings, 
names for things. For Escher, we have a very different notion of 
primitive data, as here the fundamental unit is a picture! And 
note that we made a picture as a procedure, so we have really 
blurred the boundary between data and procedure. 

In Scheme, we have primitive procedures for manipulating data objects. In Escher we also have primitive 
procedures, now oriented towards manipulating pictures. 
In Scheme, we have a standard means of combining expressions, namely procedure application. Note that in 
Escher, we have very elegantly built a similar capability. Our means of combination were ways to gluing picture 
together. And just like in Scheme, these means of combination had closure, that is, the results of a combination 
could be treated as a primitive and thus used as input to another combination. Also note that since we built Escher 
on top of Scheme, for free we got the power of Scheme, for example, the use of recursion. 
And finally, we needed a way of naming things so we could treat them as primitives, and Escher inherits exactly 
that capability from Scheme. 
The key issue to see here is how quickly we used abstraction tools to build a new language. We were able to 
suppress details so that we could focus on the use of the elements, in this case, pictures. We were naturally led to 
ideas of combining pictures, without ever having to worry about details of the actual pictures. This idea of 
describing a language for a problem domain in terms of natural primitives, means of combination and means of 
abstraction is a powerful tool that we will return to many times during the term. 
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