## Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Circuits & Electronics Spring 2007

## Homework #4 Handout S07-023

## Issued 03/01/2007 - Due 03/09/2007

Helpful readings for this homework: Chapter 4, Chapter 6.1-6.6, 6.10.

Exercise 4.1: Exercise 4.3 from Chapter 4 of A&L (page 231).

**Exercise 4.2:** Exercise 6.5 from Chapter 6 of A&L (page 323). Use Figure 6.59(c) instead and assume that  $R_6 = R_7 = 10k\Omega$ .

**Problem 4.1:** A voltage source can be represented as the series connection of an ideal DC voltage source and a resistance  $R_{IN} = 1k\Omega$ , as illustrated in Figure 1a. The model of the voltage source also includes a small signal voltage source  $v_i$  to represent the noise generated by the source. Assume  $V_I = 10V$  and  $v_i = 50 \, mV$ .



Figure 1: Simple model of a non-ideal voltage source.

In practice, connecting the non-ideal voltage source to a load resistance  $R_L$ , as in Figure 1b, may result in undesirable effects. This problem studies such effects and how to correct them by introducing a Zener diode into the circuit (Figure 2a).

- (a). In Figure 1b, calculate  $v_o$  (i.e. output noise) and  $V_O$  (i.e. DC output voltage) for  $R_L = 2 k\Omega$ and  $R_L = 4 k\Omega$ . What can you say about  $v_o$  and  $V_O$  as a function of  $R_L$ ?
- (b). Repeat part (a) for the voltage source in Figure 2a. In this setting, how do  $v_o$  and  $V_O$  change with  $R_L$ ?
- (c). In Figure 2a, what is the minimum value of  $R_L$  that would guarantee that the circuit operates as in part (b)?



Figure 2: The use of a Zener diode can correct some of the undesirable effects in non-ideal voltage sources.

**Problem 4.2:** Consider the circuit containing the nonlinear element N as shown below in Figure 3. The i-v relation for the element N is given by



Figure 3: Circuit used in Problem 4.2.

- (a). Write an equation which relates the voltage  $v_A$  to the input voltage  $v_I$ .
- (b). Solve for the voltage  $v_A$  when  $v_I = 10 V$ . Note that this requires that you solve the equation in part (a) iteratively for  $v_A$ . (*Hint: Use the exponential term to solve for*  $v_A$  *as a function of the assumed value of*  $v_A$ *, and then iterate. Taking logs on both sides may facilitate convergence.*)
- (c). Find the incremental change in  $v_A$  for a 2% increase in  $v_I$  and calculate the ratio  $\Delta v_A / \Delta v_I$ .
- (d). Find the value for the incremental resistance of the nonlinear element N by linearizing the expression for  $i_A$  about the operating point when  $v_I = 10 V$ .
- (e). Draw the incremental circuit model for the circuit shown in Figure 3.
- (f). Find the ratio  $\Delta v_A / \Delta v_I$  from the incremental circuit model and compare it with your exact model from part (c).

**Problem 4.3 (OPTIONAL):** Problem 4.3 from Chapter 4 of A&L (page 233-234). (Hint: You may want to read section 4.4 of A&L on Piecewise Linear Analysis of non-linear devices).