6.003: Signals and Systems

Frequency Response

October 6, 2011



Review

Last time, we saw how a linear, time-invariant (LTI) system can be
characterized by its unit-sample/impulse response.

(0.9]

DT: yln]=(zxh)n] = > z[klhin— k]

k=—00

CT: y(t)=(x*xh)(t)= /OO x(T)h(t — 7)dT

—0o0

Characterizing a system by its unit-sample/impulse response is es-
pecially insightful for some systems.



Microscope

Blurring can be represented by convolving the image with the optical
“point-spread-function” (3D impulse response).
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Blurring is inversely related to the diameter of the lens.
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Hubble Space Telescope

optical + atmospheric
blurring optical blurring
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Frequency Response

Today we will investigate a different way to characterize a system:
the frequency response.

Many systems are naturally described by their responses to sinusoids.

Example: audio systems



Check Yourself

How were frequencies modified in following music clips?

HFE: high frequencies 1. increased
LF: low frequencies J: decreased
clip 1 clip 2
1. HF? HF|
2. LFt LF]
3. HF1 LF]
4. LFt HF|
5. none of the above




Check Yourself

original
clip 1:
original
clip 1:
original
clip 2:
original
clip 2:

HF? HF|
HF? HF|
HF? HF|
HFt HF|

Al o

LFt

LFT

LFT

LF?T

clip 1

HF
LFt
HF
LF?t

LF]

LF|

LF|

LF|

none

none

none

none

clip 2
HF]
LF])
LFJ

HF]

none of the above
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Check Yourself

original
clip 1:
original
clip 1:
original
clip 2:
original
clip 2:

HF? HF|
HF? HF|
HF? HF|
HFt HF|

o wbh=

LFt

LFT

LFT

LF?T

clip 1

HF
LFt
HF
LF?t

LF]

LF|

LF|

LF|

none

none

none

none

clip 2
HF]
LF])
LF])

HF]

none of the above
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Frequency Response Preview

If the input to a linear, time-invariant system is an eternal sinusoid,
then the output is also an eternal sinusoid:

e same frequency

e possibly different amplitude, and

e possibly different phase angle.

z(t) = cos(wt) y(t) = M cos(wt + ¢)
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The frequency response is a plot of the magnitude M and angle ¢
as a function of frequency w.




Example

Mass, spring, and dashpot system.

spring

dashpot
mass



Demonstration

Measure the frequency response of a mass, spring, dashpot system.
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Frequency Response

Calculate the frequency response.

Methods
e solve differential equation
— find particular solution for z(t) = coswyt
e find impulse response of system
— convolve with z(t) = coswpt

New method
e use eigenfunctions and eigenvalues



Eigenfunctions

If the output signal is a scalar multiple of the input signal, we refer to
the signal as an eigenfunction and the multiplier as the eigenvalue.

eigenvalue

x(t) —»| system [ Az(t)

N

eigenfunction




Check Yourself: Eigenfunctions

Consider the system described by

y(t) + 2y(t) = =(t).
Determine if each of the following functions is an eigen-
function of this system. If it is, find its eigenvalue.

e~t for all time

et for all time
eIt for all time
cos(t) for all time

u(t) for all time

OB W




Check Yourself: Eigenfunctions

y(t) + 2y(t) = x(t)
Lelt: —deltgto2det=et s A=1

1
2. el )\et+2)\et:et—>)\:§

- , L 1
3.6t gt oIt = eIt 5 N = ——
J Jj+2

4. cost: —Asint+ 2Acost =cost — not possible!

5. u(t): Ao(t) + 2Mu(t) = u(t) - not possible!



Check Yourself: Eigenfunctions

Consider the system described by

y(t) + 2y(t) = =(t).
Determine if each of the following functions is an eigen-
function of this system. If it is, find its eigenvalue.

et foralltime Vv A=1
el for all time VvV A=1
et for all time V )\ =
cos(t) for all time X

u(t) for all time X

1
Jj+2

CIE R




Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If 2(t) = et and h(t) is the impulse response then

y(t) = (h*2)(t) = / - h(r)es =T dr = 5t / . h(T)e *Tdr = H(s)e*

—00 —00

st —p > H st
¢ h(t) (s)e

Eternal sinusoids are sums of complex exponentials.

1/ . .
coswot = 3 <e]w0t + 677“0’5)

Furthermore, the eigenvalue associated with e is H(s)!



Rational System Functions

Eigenvalues are particularly easy to evaluate for systems represented
by linear differential equations with constant coefficients.

Then the system function is a ratio of polynomials in s.

Example:
y(t) + 3y(t) + dy(t) = 2&(t) + T (t) + 8x(t)

Then )
25 +7s+8 _ N(s)
H = =
() s24+3s+4  D(s)




Vector Diagrams

The value of H(s) at a point s = sy can be determined graphically
using vectorial analysis.

Factor the numerator and denominator of the system function to
make poles and zeros explicit.

(50 —20)(s0 —21)(50 — 22) - -
H(sg) = K(SO —po)(so — p1)(so —p2) - - -

50 s-plane

S0
50 — 20

20

Each factor in the numerator/denominator corresponds to a vector
from a zero/pole (here zp) to sg, the point of interest in the s-plane.
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Vector Diagrams

Example: Find the response of the system described by

1
H(s):s+2

to the input z(t) = e2/* (for all time).

s-plane
50 —\V’ 50=2]
N\
-2
The denominator of H(s)|s—9; IS 2j+2, a vector with length 2v/2 and

angle w/4. Therefore, the response of the system is

: 1 ‘
y(t) = H(2j)e¥t = ——e Tt

2v2
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Vector Diagrams

The value of H(s) at a point s = sy can be determined by combining
the contributions of the vectors associated with each of the poles
and zeros.

~(s0—20)(s0 — 21)(so — z2) -+ -
H(sg) = K(SO —p0)(s0 — p1)(s0 — p2) - -

The magnitude is determined by the product of the magnitudes.
S0 — 20)||(s0 — z1)||(So — 22)| - -~
(o) — ) 50 =20l =)l = =)
|(s0 = po)l[(so — p1)l[(so —p2)| -

The angle is determined by the sum of the angles.
ZH(sg) = LK 4 Z(s0 — 20) + Z(s0 —21) + - — Z(s0 —po) — £(s0 —p1) —- - -
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Frequency Response

Response to eternal sinusoids.

Let z(t) = coswqgt (for all time). Then
1/ . ,
x(t) = 3 (engt + 67]w0t>

and the response to a sum is the sum of the responses.

y(t) = % <H(]w0) eJwot H (—jwp) e—jwot)
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Conjugate Symmetry

The complex conjugate of H(jw) is H(—jw).

The system function is the Laplace transform of the impulse re-
sponse:

H(s) = /OO h(t)e stdt

— 00

where h(t) is a real-valued function of ¢ for physical systems.

H(jw) = / T heIta

H(—jw) = /_ - h(t)el¥tdt = (H(jw))"
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Frequency Response

Response to eternal sinusoids.

Let z(t) = coswpt (for all time), which can be written as
1/ . )
x(t) = 3 (ejwﬂt + 67]w0t>

The response to a sum is the sum of the responses,
) = 5 ()" + H(=jun)e50")
= Re { H(jug)e 0t |
= Re { |H(jug) |/ o) ot}
= |H jug) Re { efe0t+i£H o) |

y(t) = [H (jwo)| cos (wot + Z£H (jwo)) -
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Frequency Response

The magnitude and phase of the response of a system to an eternal
cosine signal is the magnitude and phase of the system function

evaluated at s = jw.

cos(wt) —»| H(s) = |H(jw)|cos (wt+ ZH (jw))
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Vector Diagrams

H(s)=s—2

s-plane

()
) 4
Q
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[H (jw)]

ot




Vector Diagrams

H(s)=s—2

s-plane

(¢
Q
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[H (jw)]

ot




Vector Diagrams

| H (jw)|
H(s)=s—2 5
w
®  splane
3 =5 0
/ /H(jw)
-5 ~ 5 7 /2

ot
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Vector Diagrams

[H (jw)|
H(s)=s—2 5
w
5 s-plane
g I
-5 0
H(jw)
-5 e 5 7 /2

ot
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Vector Diagrams

|H (jw)
H(s)=s—2 5
w
5 s-plane
-5 0
/H(ju)
-5 7 5 7 /2

ot
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Vector Diagrams

|H (jw)
H(s)=s—2 S
w
5 s-plane
-5 0
ZH (jw)

q

[
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Vector Diagrams

H(s)=s—2

s-plane

()
) 4
Q
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[H (jw)]

ot




Vector Diagrams

|H (jw)|
H(s)=s—2 5
w
5 s plane
-5 0
ZH (jw)

| -
ot
o

Q
N
~
[\

ot
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Vector Diagrams

|H (jw)|
H(s)=s—2 5
w
5 s plane
-5 0
ZH (jw)

ot
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Vector Diagrams

ot

|H (jw)|
H(s)=s—2 5
w
5 s plane
-5 0
ZH (jw)
r & 1 O
J
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Vector Diagrams

ot

|H (jw)|
H(s)=s—2 5
w
5 s plane
-5 0
ZH (jw)
r @ 1 O
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Vector Diagrams

ot

|H (jw)|
H(s)=s—2 5
w
5 s plane
-5 0
ZH (jw)
T ) 1 g
5
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Vector Diagrams

) 4
Q
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Ihé (_jw)l
/\
—5 0 5
/H(jw)




Vector Diagrams

Q
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|H (jw)]
5_
/\
-5 0 5
/H(jw)




Vector Diagrams

Q
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|H (jw)]
5_
/\‘\
-5 0 5
/H(jw)




Vector Diagrams

Q
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[H (jw)]
5_
/\\
-5 0 5
ZH (jw)




Vector Diagrams
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[H (jw)]
5_
/\
-5 0 5
ZH (jw)




Vector Diagrams

[H (jw)]
H(s) = 51

Q
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Vector Diagrams

s—2
H =3
(s) sl
w
5 s-plane
T o—> .o
5
L5
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|H (jw)
5_
—_—
-5 0 5
ZH (jw)




Vector Diagrams

s—z1
H =3
(s) gl
w
5 s plane
\y/'
r \wj %
-—5
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|H (jw)
5_
—_
-5 0 5
ZH (jw)




Vector Diagrams

s—2
H(s) =3
(s) gl
w
5 s-plane
p
T \u/ 1 O
L5
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|H (jw)
5_
—_— | —
-5 0 5
ZH (jw)




Vector Diagrams

s — 21
H(s)=3
(s) gl
w
5 s-plane
T \ 1
)
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[H (jw)|
5_
\/
-5 0 5
ZH (jw)




Vector Diagrams

s — 21
H(s)=3
(s) gl
w
5 s-plane
T \ 1
)
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[H (jw)|
5_
\/
-5 0 5
ZH (jw)




Vector Diagrams

S — 2z
H(s)=3
(s) s pl
w
5 s-plane
r L\ 1
-5
L-5
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[H (jw)|
5_
\/.
-5 0 5
£H (jw)




Example: Mass, Spring, and Dashpot

t x(t)
: 1 y(t)
[ ]
F = Ma = Mj(t) = K(x(t) - y(t)) — By(t)
Mij(t) + By(t) + Ky(t) = Kx(t)

(M + sB+ K) Y(s) = KX(s)

K
)= B K
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Vector Diagrams
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Vector Diagrams

H(s) = 15
(s —p1)(s — p2)
w
5 s-plane
} ¢
T O

) 5

L5
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[H (jw)]




Vector Diagrams
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Vector Diagrams
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[H (jw)]




Vector Diagrams
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Vector Diagrams
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Check Yourself

Consider the system represented by the following poles.
s-plane

_wd

__wd

Find the frequency w at which the magnitude of the re-
sponse y(t) is greatest if z(t) = coswt.

1. w=uwy 2. wg <w<wy
3. 0<w<wy 4. none of the above
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Check Yourself: Frequency Response

Analyze with vectors.

s-plane
_wd
p (W

F—wg

The product of the lengths is (\/(w+wd)2 +02) <\/(w —wy)? +02).
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Check Yourself: Frequency Response

Analyze with vectors.
s-plane

_wd

- —wy

The product of the lengths is (\/(w+wd)2 +02) <\/(w —wy)? +02).

Decreasing w from w; to wy — € decreases the product since length
of bottom vector decreases as ¢ while length of top vector increases

only as €2.
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Check Yourself: Frequency Response

More mathematically ...

s-plane
_wd
p (W

- —wy

The product of the lengths is (\/(w+wd)2 +02) <\/(w —wy)? +02).

Maximum occurs where derivative of squared lengths is zero.

L (@ +0%) (- w? +0%) =0

— w2:w2—02:w8—202.
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Check Yourself

Consider the system represented by the following poles.
s-plane

- Wy
4%

__wd

Find the frequency w at which the magnitude of the re-
sponse y(t) is greatest if x(t) = coswt. 3

1. w=uwy 2. wg <w<wy
3. 0<w<wy 4. none of the above
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Check Yourself

Consider the system represented by the following poles.
s-plane

_wd

__wd

Find the frequency w at which the phase of the response
y(t) is —m/2 if z(t) = coswt.

0. 0 <w<wy 1. w=uwy 2. wg <w < wp
3. w=uwp 4. w>wy 5. none
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Check Yourself

The phase is 0 when w = 0.

63
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Check Yourself

The phase is less than n/2 when w = wy.

s-plane

_wd
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Check Yourself

The phase is —7/2 at w = wyp.

_wd

0l

_wd

65

__wd




Check Yourself

Check result by evaluating the system function.

Substitute s = juwg = jy/ & into
K K K

HSZ = = —
() s2M+sB+K a4 juB+ K jwbB

The phase is —7.
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Check Yourself

Consider the system represented by the following poles.
s-plane

_wd

__wd

Find the frequency w at which the phase of the response
y(t) is —m/2 if z(t) = coswt. 3

0. 0 <w<wy 1. w=uwy 2. wg <w < wp
3. w=uwp 4. w>w 5. none
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Frequency Response: Summary

LTI systems can be characterized by responses to eternal sinusoids.

Many systems are naturally described by their frequency response.
— audio systems
— mass, spring, dashpot system

Frequency response is easy to calculate from the system function.

Frequency response lives on the jw axis of the Laplace transform.
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