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Review
 

Last time, we saw how a linear, time-invariant (LTI) system can be 

characterized by its unit-sample/impulse response. 

∞0 
DT: y[n] = (x ∗ h)[n] = x[k]h[n − k] 

k=−∞ � ∞ 
CT: y(t) = (x ∗ h)(t) = x(τ)h(t − τ)dτ 

−∞ 

Characterizing a system by its unit-sample/impulse response is es­

pecially insightful for some systems. 
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Microscope
 

Blurring can be represented by convolving the image with the optical 

“point-spread-function” (3D impulse response). 

Blurring is inversely related to the diameter of the lens. 

target image

∗ =
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Hubble Space Telescope
 

−2 −1 0 1 2 θ

optical + atmospheric
blurring

−2 −1 0 1 2 θ

optical blurring

[arc-sec]
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Frequency Response
 

Today we will investigate a different way to characterize a system:
 

the frequency response.
 

Many systems are naturally described by their responses to sinusoids.
 

Example: audio systems
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Check Yourself
 

How were frequencies modified in following music clips? 

HF: high frequencies ↑: increased 

LF: low frequencies ↓: decreased 

clip 1 clip 2 

1. HF↑ HF↓ 

2. LF↑ LF↓ 

3. HF↑ LF↓ 

4. LF↑ HF↓ 

5. none of the above 
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Check Yourself
 

original 

clip 1: HF↑ HF↓ 

original 

clip 1: HF↑ HF↓ 

original 

clip 2: HF↑ HF↓ 

original 

clip 2: HF↑ HF↓ 

1. 

2. 

3. 

4. 

5. 

LF↑ LF↓ none
 

LF↑ LF↓ none 

LF↑ LF↓ none 

LF↑ LF↓ none 

clip 1 clip 2 

HF↑ HF↓ 

LF↑ LF↓ 

HF↑ LF↓ 

LF↑ HF↓ 

none of the above 
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Check Yourself
 

original 

clip 1: HF↑ HF↓ 

original 

clip 1: HF↑ HF↓ 

original 

clip 2: HF↑ HF↓ 

original 

clip 2: HF↑ HF↓ 

1. 

2. 

3. 

4. 

5. 

LF↑ LF↓ none
 

LF↑ LF↓ none 

LF↑ LF↓ none 

LF↑ LF↓ none 

clip 1 clip 2 

HF↑ HF↓ 

LF↑ LF↓ 

HF↑ LF↓ 

LF↑ HF↓ 

none of the above 
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Frequency Response Preview
 

If the input to a linear, time-invariant system is an eternal sinusoid, 

then the output is also an eternal sinusoid: 

• same frequency 

• possibly different amplitude, and 

• possibly different phase angle. 

The frequency response is a plot of the magnitude M and angle φ 

as a function of frequency ω. 

x(t) = cos(ωt)

t

y(t) = M cos(ωt+ φ)

t
LTI

system
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Example
 

Mass, spring, and dashpot system. 

spring

dashpot
mass
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Demonstration
 

Measure the frequency response of a mass, spring, dashpot system. 

x(t)

y(t)
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Frequency Response
 

Calculate the frequency response. 

Methods 

• solve differential equation 

→ find particular solution for x(t) = cos ω0t 

• find impulse response of system 

→ convolve with x(t) = cos ω0t 

New method 

• use eigenfunctions and eigenvalues 
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Eigenfunctions
 

If the output signal is a scalar multiple of the input signal, we refer to
 

the signal as an eigenfunction and the multiplier as the eigenvalue.
 

systemx(t) λx(t)

eigenvalue

eigenfunction
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Check Yourself: Eigenfunctions
 

Consider the system described by 
ẏ(t) + 2y(t) = x(t). 

Determine if each of the following functions is an eigen­

function of this system. If it is, find its eigenvalue. 

1. e−t for all time 

2. et for all time 

3. ejt for all time 

4. cos(t) for all time 

5. u(t) for all time 
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Check Yourself: Eigenfunctions
 

ẏ(t) + 2y(t) = x(t)
 

−t :
1. e −λe−t + 2λe−t = e −t → λ = 1 

12. e t : λet + 2λet = e t → λ = 3 

1jt : jt → λ =3. e jλejt + 2λejt = e
j + 2 

4. cos t : −λ sin t + 2λ cos t = cos t → not possible! 

5. u(t) : λδ(t) + 2λu(t) = u(t) → not possible! 
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Check Yourself: Eigenfunctions
 

Consider the system described by 
ẏ(t) + 2y(t) = x(t). 

Determine if each of the following functions is an eigen­

function of this system. If it is, find its eigenvalue. 

1. e−t for all time 
√ 

λ = 1 

2. et for all time 
√ 

λ = 1 
3 

3. ejt for all time 
√ 

λ = 1 
j+2 

4. cos(t) for all time X 

5. u(t) for all time X 
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Complex Exponentials
 

Complex exponentials are eigenfunctions of LTI systems. 

stIf x(t) = e and h(t) is the impulse response then 

∞ ∞ 
st st y(t) = (h ∗ x)(t) = h(τ )e s(t−τ)dτ = e h(τ)e −sτ dτ = H(s) e 

−∞ −∞ 

est H(s) estLTI
h(t)

Eternal sinusoids are sums of complex exponentials. 

1 jω0t + e −jω0tcos ω0t = e2 

stFurthermore, the eigenvalue associated with e is H(s) ! 
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Rational System Functions
 

Eigenvalues are particularly easy to evaluate for systems represented
 

by linear differential equations with constant coefficients.
 

Then the system function is a ratio of polynomials in s.
 

Example:
 

ÿ(t) + 3ẏ(t) + 4y(t) = 2ẍ(t) + 7ẋ(t) + 8x(t) 

Then 
2s2 + 7s + 8 N(s)

H(s) = ≡ 
s2 + 3s + 4 D(s) 
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Vector Diagrams
 

The value of H(s) at a point s = s0 can be determined graphically 

using vectorial analysis. 

Factor the numerator and denominator of the system function to 

make poles and zeros explicit. 

(s0 − z0)(s0 − z1)(s0 − z2) · · · 
H(s0) = K (s0 − p0)(s0 − p1)(s0 − p2) · · · 

z0
z0

s0 − z0
s0

s-planes0

Each factor in the numerator/denominator corresponds to a vector 

from a zero/pole (here z0) to s0, the point of interest in the s-plane. 
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Vector Diagrams
 

Example: Find the response of the system described by 
1 

H(s) = 
s + 2 

to the input x(t) = e2jt (for all time). 

−2

s0 − p0

s-plane

s0 = 2j

√
The denominator of H(s)|s=2j is 2j + 2, a vector with length 2 2 and 

angle π/4. Therefore, the response of the system is 
1 jπ2jt − 2jt y(t) = H(2j)e = √ e 4 e .

2 2
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Vector Diagrams
 

The value of H(s) at a point s = s0 can be determined by combining 

the contributions of the vectors associated with each of the poles 

and zeros. 

(s0 − z0)(s0 − z1)(s0 − z2) · · · 
H(s0) = K (s0 − p0)(s0 − p1)(s0 − p2) · · · 

The magnitude is determined by the product of the magnitudes. 
|(s0 − z0)||(s0 − z1)||(s0 − z2)| · · · |H(s0)| = |K|
|(s0 − p0)||(s0 − p1)||(s0 − p2)| · · · 

The angle is determined by the sum of the angles. 

∠H(s0) = ∠K + ∠(s0 − z0)+ ∠(s0 − z1)+ · · ·− ∠(s0 − p0) − ∠(s0 − p1) −· · · 
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Frequency Response
 

Response to eternal sinusoids. 

Let x(t) = cos ω0t (for all time). Then 
1 jω0t + e −jω0t x(t) = e2 

and the response to a sum is the sum of the responses. 
1 jω0t + H(−jω0) e −jω0t y(t) = H(jω0) e2 
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Conjugate Symmetry
 

The complex conjugate of H(jω) is H(−jω). 

The system function is the Laplace transform of the impulse re­

sponse: 
∞ 

H(s) = h(t)e −stdt 
−∞ 

where h(t) is a real-valued function of t for physical systems. 

∞ 
−jωtdtH(jω) = h(t)e 

−∞ 
∞ 

jωtdt ≡H(−jω) = h(t)e
 
H(jω)

 ∗ 

−∞ 
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Frequency Response
 

Response to eternal sinusoids. 

Let x(t) = cos ω0t (for all time), which can be written as 
1 jω0t + e −jω0t x(t) = e2 

The response to a sum is the sum of the responses, 
1 −jω0t y(t) = H(jω0)ejω0t + H(−jω0)e2   

= Re H(jω0)ejω0t  
= Re |H(jω0)|ej∠H(jω0)ejω0t  
= |H(jω0)|Re ejω0t+j∠H(jω0)

y(t) = |H(jω0)| cos (ω0t + ∠H(jω0)) . 
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Frequency Response
 

The magnitude and phase of the response of a system to an eternal
 

cosine signal is the magnitude and phase of the system function
 

evaluated at s = jω.
 

H(s)cos(ωt) |H(jω)| cos
(
ωt+ ∠H(jω)

)
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Vector Diagrams 

s-plane

σ

ω
5

−5

5−5

H(s) = s− z1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)
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s-plane

σ

ω
5

−5

5−5

H(s) = s− z1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)

Vector Diagrams
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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s-plane
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Example: Mass, Spring, and Dashpot 

x(t)

y(t)

F = Ma = M ̈y(t) = K(x(t) − y(t)) − Bẏ(t) 

Mÿ(t) + Bẏ(t) + Ky(t) = Kx(t) 

(s 2M + sB + K) Y (s) = KX(s) 
K 

H(s) = 
s2M + sB + K 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Vector Diagrams 
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Check Yourself
 

Consider the system represented by the following poles. 

ω0

s-plane

−σ

ωd

−ωd

Find the frequency ω at which the magnitude of the re­

sponse y(t) is greatest if x(t) = cos ωt. 

1. ω = ωd 2. ωd < ω < ω0 

3. 0 < ω < ωd 4. none of the above 

57



� �� �

Check Yourself: Frequency Response 

Analyze with vectors. 

ω0

s-plane

−σ

ωd

−ωd

ω

The product of the lengths is (ω + ωd)2 + σ2 (ω − ωd)2 + σ2 . 
� � 
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Check Yourself: Frequency Response 

Analyze with vectors. 

ω0

s-plane

−σ

ωd

−ωd

The product of the lengths is (ω − ωd)2 + σ2 .(ω + ωd)2 + σ2 

Decreasing ω from ωd to ωd − E decreases the product since length 

of bottom vector decreases as E while length of top vector increases 

only as E2 . 
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Check Yourself: Frequency Response 

More mathematically ... 

ω0

s-plane

−σ

ωd

−ωd

ω

The product of the lengths is (ω + ωd)2 + σ2 (ω − ωd)2 + σ2 . 

Maximum occurs where derivative of squared lengths is zero. 
d (ω + ωd)2 + σ2 (ω − ωd)2 + σ2 = 0 

dω 

→ ω2 = ω2 − σ2 = ω0
2 − 2σ2 .d 
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Check Yourself
 

Consider the system represented by the following poles. 

ω0

s-plane

−σ

ωd

−ωd

ω

Find the frequency ω at which the magnitude of the re­

sponse y(t) is greatest if x(t) = cos ωt. 3 

1. ω = ωd 2. ωd < ω < ω0 

3. 0 < ω < ωd 4. none of the above 
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Check Yourself
 

Consider the system represented by the following poles. 

ω0

s-plane

−σ

ωd

−ωd

Find the frequency ω at which the phase of the response 

y(t) is −π/2 if x(t) = cos ωt. 

0. 0 < ω < ωd 1. ω = ωd 2. ωd < ω < ω0 

3. ω = ω0 4. ω > ω0 5. none 
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Check Yourself
 

The phase is 0 when ω = 0. 

ω0

s-plane

−σ

ωd

−ωd
α

β = −α
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Check Yourself
 

The phase is less than π/2 when ω = ωd. 

ω0

s-plane

−σ

ωd

−ωd
α
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Check Yourself
 

The phase is −π/2 at ω = ω0. 

ω0

−σ

ωd

−ωd
α

β

ω0

−σ

ωd

−ωd

π
2
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Check Yourself
 

Check result by evaluating the system function.  
Substitute s = jω0 = j
 K 

M into
 

K K K
 = =
H(s) =
 2M + sB + K −
K 
M M + jω0B + K jω0Bs


The phase is −
π 
2 . 
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Check Yourself
 

Consider the system represented by the following poles. 

ω0

s-plane

−σ

ωd

−ωd

Find the frequency ω at which the phase of the response 

y(t) is −π/2 if x(t) = cos ωt. 3 

0. 0 < ω < ωd 1. ω = ωd 2. ωd < ω < ω0 

3. ω = ω0 4. ω > ω0 5. none 
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Frequency Response: Summary
 

LTI systems can be characterized by responses to eternal sinusoids. 

Many systems are naturally described by their frequency response. 

– audio systems
 

– mass, spring, dashpot system
 

Frequency response is easy to calculate from the system function.
 

Frequency response lives on the jω axis of the Laplace transform.
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