
6.003: Signals and Systems 

Discrete-Time Frequency Representations 

November 8, 2011
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Mid-term Examination #3
 

Wednesday, November 16, 7:30-9:30pm, 

No recitations on the day of the exam. 

Coverage: Lectures 1–18 

Recitations 1–16 

Homeworks 1–10 

Homework 10 will not be collected or graded. 

Solutions will be posted. 

Closed book: 3 pages of notes (81
2 × 11 inches; front and back). 

No calculators, computers, cell phones, music players, or other aids. 

Designed as 1-hour exam; two hours to complete. 

Review session Monday at 3pm and at open office hours. 

Prior term midterm exams have been posted on the 6.003 website. 

Conflict? Contact before Friday, Nov. 11, 5pm. 
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Signal Processing: From CT to DT
 

Signal-processing problems first conceived & addressed in CT: 

•	 audio 

− radio (noise/static reduction, automatic gain control, etc.) 

− telephone (equalizers, echo-suppression, etc.) 

− hi-fi (bass, treble, loudness, etc.) 

•	 imaging 

− television (brightness, tint, etc.) 

− photography (image enhancement, gamma) 

− x-rays (noise reduction, contrast enhancement) 

− radar and sonar (noise reduction, object detection) 

Such problems are increasingly solved with DT signal processing: 

•	 MP3 

•	 JPEG 

•	 MPEG 
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Signal Processing: Acoustical
 

Mechano-acoustic components to optimize frequency response of 

loudspeakers: e.g., “bass-reflex” system. 

driver

reflex port
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Signal Processing: Acoustico-Mechanical
 

Passive radiator for improved low-frequency preformance.
 

driver

passive
radiator
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Signal Processing: Electronic
 

Low-cost electronics → new ways to overcome frequency limitations.
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Small speakers (4 inch): eight facing wall, one facing listener. 

Electronic “equalizer” compensated for limited frequency response. 
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Signal Processing
 

Modern audio systems process sounds digitally.
 

A/D DT filter D/Ax(t) y(t)
x[n] y[n]
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Signal Processing
 

Modern audio systems process sounds digitally. 

Texas Instruments TAS3004

• 2 channels

• 24 bit ADC, 24 bit DAC

• 48 kHz sampling rate

• 100 MIPS

• $9.63 ($5.20 in bulk)
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DT Fourier Series and Frequency Response
 

Today: frequency representations for DT signals and systems.
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Review: Complex Geometric Sequences
 

Complex geometric sequences are eigenfunctions of DT LTI systems. 

nFind response of DT LTI system (h[n]) to input x[n] = z . 

∞ ∞0 0 
n−k n −k n y[n] = (h ∗ x)[n] = h[k]z = z h[k]z = H(z) z . 

k=−∞ k=−∞ 

Complex geometrics (DT): analogous to complex exponentials (CT)
 

h[n]zn H(z) zn

h(t)est H(s) est
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Review: Rational System Functions
 

A system described by a linear difference equation with constant 

coefficients → system function that is a ratio of polynomials in z. 

Example: 

y[n − 2] + 3y[n − 1] + 4y[n] = 2x[n − 2] + 7x[n − 1] + 8x[n]
 

2z−2 + 7z−1 + 8 2 + 7z + 8z2 N(z)

H(z) = = 2 ≡ 

z−2 + 3z−1 + 4 1 + 3z + 4z D(z) 
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DT Vector Diagrams
 

Factor the numerator and denominator of the system function to 

make poles and zeros explicit. 

(z0 − q0)(z0 − q1)(z0 − q2) · · · 
H(z0) = K (z0 − p0)(z0 − p1)(z0 − p2) · · · 

Each factor in the numerator/denominator corresponds to a vector 

from a zero/pole (here q0) to z0, the point of interest in the z-plane. 

q0
q0

z0 − q0
z0

z-plane
z0

Vector diagrams for DT are similar to those for CT. 
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DT Vector Diagrams
 

Value of H(z) at z = z0 can be determined by combining the contri­

butions of the vectors associated with each of the poles and zeros. 

(z0 − q0)(z0 − q1)(z0 − q2) · · · 
H(z0) = K (z0 − p0)(z0 − p1)(z0 − p2) · · · 

The magnitude is determined by the product of the magnitudes. 

|(z0 − q0)||(z0 − q1)||(z0 − q2)| · · · |H(z0)| = |K| 
|(z0 − p0)||(z0 − p1)||(z0 − p2)| · · · 

The angle is determined by the sum of the angles. 

∠H(z0) = ∠K + ∠(z0 − q0)+ ∠(z0 − q1)+ · · · − ∠(z0 − p0) − ∠(z0 − p1) −· · · 
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DT Frequency Response
 

Response to eternal sinusoids. 

Let x[n] = cos Ω0n (for all time):     1 jΩ0n + e −jΩ0n 1 n nx[n] = e = z0 + z12 2
jΩ0 −jΩ0where z0 = e and z1 = e .
 

The response to a sum is the sum of the responses:
   1 n ny[n] = H(z0) z0 + H(z1) z12   1 −jΩ0n= 2 H(e jΩ0 ) e jΩ0n + H(e −jΩ0 ) e 
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Conjugate Symmetry
 

For physical systems, the complex conjugate of H(e jΩ) is H(e−jΩ).
 

The system function is the Z transform of the unit-sample response:
 
∞

−nH(z) = h[n]z 
n=−∞ 

where h[n] is a real-valued function of n for physical systems. 

0 

∞
h[n]e 

0 

−∞=n
∞0 

jΩ) = −jΩnH(e
 

∗ −jΩ) = jΩn ≡ H(e jΩ)H(e
 h[n]e
 
n=−∞ 
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DT Frequency Response
 

Response to eternal sinusoids. 

Let x[n] = cos Ω0n (for all time), which can be written as 
1 

x[n] = 2 
e jΩ0n + e −jΩ0n . 

Then 
1 

y[n] = 2 
H(e jΩ0 )e jΩ0n + H(e −jΩ0 )e −jΩ0n   

= Re H(e jΩ0 )e jΩ0n  
= Re |H(e jΩ0 )|e j∠H(e jΩ0 )e jΩ0n  

jΩ0n+j∠H(e jΩ0 )= |H(e jΩ0 )|Re e     
y[n] =  H(e jΩ0 ) cos Ω0n + ∠H(e jΩ0 ) 
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DT Frequency Response
 

The magnitude and phase of the response of a system to an eternal
 

cosine signal is the magnitude and phase of the system function 

evaluated on the unit circle. 

H(z)cos(Ωn) |H(e jΩ)| cos
(

Ωn+ ∠H(e jΩ)
)

H(e jΩ) = H(z)|z=e jΩ 
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Finding Frequency Response with Vector Diagrams 

z-plane

H(z) = z − q1
z − p1

−π 0 π

1

∣∣∣H(e jΩ)
∣∣∣

−π π

π/2

−π/2

∠H(e jΩ)
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 

z-plane

H(z) = z − q1
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Finding Frequency Response with Vector Diagrams 

z-plane

H(z) = z − q1
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 
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Finding Frequency Response with Vector Diagrams 
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Comparision of CT and DT Frequency Responses
 

CT frequency response: H(s) on the imaginary axis, i.e., s = jω. 

jΩ

s-plane

σ

ω

−5 0 5

|H(jω)|

z-plane

−π 0 π

1

∣∣∣H(e jΩ)
∣∣∣

DT frequency response: H(z) on the unit circle, i.e., z = e . 
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DT Periodicity
 

DT frequency responses are periodic functions of Ω, with period 2π. 

If Ω2 = Ω1 + 2πk where k is an integer then 

H(e jΩ2 ) = H(e j(Ω1+2πk)) = H(e jΩ1 e j2πk) = H(e jΩ1 ) 

jΩThe periodicity of H(e jΩ) results because H(e jΩ) is a function of e , 

which is itself periodic in Ω. Thus DT complex exponentials have 

many “aliases.” 

jΩ2 j(Ω1+2πk) jΩ1 e j2πk jΩ1e = e = e = e 

Because of this aliasing, there is a “highest” DT frequency: Ω = π. 
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Comparision of CT and DT Frequency Responses
 

CT frequency response: H(s) on the imaginary axis, i.e., s = jω. 

jΩ

s-plane

σ

ω

−5 0 5

|H(jω)|

z-plane

−π 0 π

1

∣∣∣H(e jΩ)
∣∣∣

DT frequency response: H(z) on the unit circle, i.e., z = e . 

30



Check Yourself
 

Consider 3 CT signals: 

x1(t) = cos(3000t) ; x2(t) = cos(4000t) ; x3(t) = cos(5000t) 

Each of these is sampled so that 

x1[n] = x1(nT ) ; x2[n] = x2(nT ) ; x3[n] = x3(nT ) 

where T = 0.001. 

Which list goes from lowest to highest DT frequency? 

0. x1[n] x2[n] x3[n] 1. x1[n] x3[n] x2[n] 

2. x2[n] x1[n] x3[n] 3. x2[n] x3[n] x1[n] 

4. x3[n] x1[n] x2[n] 5. x3[n] x2[n] x1[n] 
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Check Yourself
 

The discrete signals are 

x1[n] = cos[3n]
 
x2[n] = cos[4n]
 
x3[n] = cos[5n]
 

and the corresponding discrete frequencies are Ω = 3, 4 and 5, repre­
sented below with × marking e jΩ and o marking e−jΩ). 

3

4
5

3

4
5
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Check Yourself
 

Ω = 0.25 

n

x[n] = cos(0.25n)
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Check Yourself
 

Ω = 0.5 

n

x[n] = cos(0.5n)
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Check Yourself
 

Ω = 1 

n

x[n] = cos(n)
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Check Yourself
 

Ω = 2 

n

x[n] = cos(2n)
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Check Yourself
 

Ω = 3 

n

x[n] = cos(3n)
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Check Yourself
 

Ω = 4 

n

x[n] = cos(4n) = cos(2π − 4n) ≈ cos(2.283n)

n
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Check Yourself
 

Ω = 5 

n

x[n] = cos(5n) = cos(2π − 5n) ≈ cos(1.283n)

n
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Check Yourself
 

Ω = 6 

n

x[n] = cos(6n) = cos(2π − 6n) ≈ cos(0.283n)

n
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Check Yourself
 

The discrete signals are 

x1[n] = cos[3n]
 
x2[n] = cos[4n]
 
x3[n] = cos[5n]
 

and the corresponding discrete frequencies are Ω = 3, 4 and 5, repre­
sented below with × marking e jΩ and o marking e−jΩ). 

3

4
5

3

4
5
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Check Yourself
 

Consider 3 CT signals: 

x1(t) = cos(3000t) ; x2(t) = cos(4000t) ; x3(t) = cos(5000t) 

Each of these is sampled so that 

x1[n] = x1(nT ) ; x2[n] = x2(nT ) ; x3[n] = x3(nT ) 

where T = 0.001. 

Which list goes from lowest to highest DT frequency? 5 

0. x1[n] x2[n] x3[n] 1. x1[n] x3[n] x2[n] 

2. x2[n] x1[n] x3[n] 3. x2[n] x3[n] x1[n] 

4. x3[n] x1[n] x2[n] 5. x3[n] x2[n] x1[n] 
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Check Yourself
 

What kind of filtering corresponds to the following? 

z-plane

1. high pass 2. low pass 

3. band pass 4. band stop (notch) 

5. none of above 
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Check Yourself
 

What kind of filtering corresponds to the following? 1 

z-plane

1. high pass 2. low pass 

3. band pass 4. band stop (notch) 

5. none of above 
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DT Fourier Series
 

DT Fourier series represent DT signals in terms of the amplitudes 

and phases of harmonic components. 0 
jkΩ0n x[n] = ake 

The period N of all harmonic components is the same (as in CT). 
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DT Fourier Series
 

There are (only) N distinct complex exponentials with period N . 

(There were an infinite number in CT!) 

jΩnIf y[n] = e is periodic in N then 

jΩn jΩ(n+N) jΩn jΩN y[n] = e = y[n + N ] = e = e e 

jΩNand e must be 1, and ejΩ must be one of the N th roots of 1. 

Example: N = 8 
z-plane
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DT Fourier Series
 

There are N distinct complex exponentials with period N . 

These can be combined via Fourier series to produce periodic time 

signals with N independent samples. 

n

Example: periodic in N=3

3 samples repeated in time 3 complex exponentials

n

Example: periodic in N=4

4 samples repeated in time 4 complex exponentials
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DT Fourier Series
 

DT Fourier series represent DT signals in terms of the amplitudes 

and phases of harmonic components. 

N0−1 2πjkΩ0n x[n] = x[n + N ] = ake ; Ω0 = 
N 

k=0 

N equations (one for each point in time n) in N unknowns (ak). 

Example: N = 4 

2 2 2 2⎡
 ⎡
⎤
 ⎤⎡⎤ 
a0 

π π π π0·0 1·0 2·0 3·0x[0]
 j j j jN N N Ne
 e
 e
 e
 
2 2 2 1· N

π2 2π π π0·1 1·1 3·1⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
=
 
⎢⎢⎢⎣
 

⎢⎢⎢⎣
 

⎥⎥⎥⎦
 

⎥⎥⎥⎦
 

x[1]
 
x[2]
 

j j j j a1 

a2 

N N Ne
 e
 e
 e
 
2 2 2 2π π π π0·2 1·2 2·2 3·2j j j jN N N Ne
 e
 e
 e
 
2 2 2 2π π π π0·3 1·3 2·3 3·3 x[3] e j j j j a3N e
 N e
 N e
 N
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DT Fourier Series
 

DT Fourier series represent DT signals in terms of the amplitudes 

and phases of harmonic components. 

N0−1 2πjkΩ0n x[n] = x[n + N ] = ake ; Ω0 = 
N 

k=0 

N equations (one for each point in time n) in N unknowns (ak). 

Example: N = 4 ⎡
 ⎡
⎤
 ⎤⎡⎤ 
a0x[0]
 1 1 1 1 

1 j −1 −j 

1 −1 1 −1 

⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
=
 
⎢⎢⎢⎣
 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

a1 

a2 

⎥⎥⎥⎦
 

x[1]
 
x[2]
 
x[3] 1 −j −1 j a3 
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Orthogonality
 

DT harmonics are orthogonal to each other (as were CT harmonics).
 

N0−1 N0−1 
jΩ0kn −jΩ0ln jΩ0(k−l)n e e = e 

n=0 n=0 ⎧ 
N ; k = l⎨ 

2πj (k−l)N= 1−e jΩ0(k−l)N 1−e N⎩ = = 0 ; k =� ljΩ0(k−l) 2π1−e j (k−l)1−e N 

= Nδ[k − l] 

50



Sifting
 

Use orthogonality property of harmonics to sift out FS coefficients. 

N0−1
 
jkΩ0n
Assume x[n] = ake 

k=0 

Multiply both sides by the complex conjugate of the lth harmonic, 

and sum over time. 

N0−1 N0−1 N0−1 N0−1 N0−1 
−jlΩ0n jkΩ0n −jlΩ0n jkΩ0n −jlΩ0n x[n]e = ake e = ak e e 

n=0 n=0 k=0 k=0 n=0 

N0−1 

= akNδ[k − l] = Nal 
k=0 

N0−11 −jkΩ0n ak = x[n]e 
N 

n=0 
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DT Fourier Series
 

Since both x[n] and ak are periodic in N , the sums can be taken over 

any N successive indices. 

Notation. If f [n] is periodic in N , then 
N0−1 N N+10 0 0 

f [n] = f [n] = f [n] = · · · = f [n] 
n=0 n=1 n=2 n=<N> 

DT Fourier Series
 

1 2π0 −jkΩ0n ak = ak+N = x[n]e ; Ω0 = (“analysis” equation) 
N N 

n=<N>
 0 
jkΩ0n
 x[n]= x[n + N ] = ake (“synthesis” equation) 

k=<N> 
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DT Fourier Series
 

DT Fourier series have simple matrix interpretations.
 0
 0
 
jk 2

0π 
4 n =
jkΩ0n =
x[n] = x[n + 4] =
 akjkn ake ake 

k=<4> k=<4> k=<4> ⎡
 ⎡
⎤
 ⎤⎡⎤ 
a0x[0]
 1 1 1 1 

1 j −1 −j 

1 −1 1 −1 

⎢⎢⎢⎣
 

⎥⎥⎥⎦
 
=
 
⎢⎢⎢⎣
 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

a1 

a2 

⎥⎥⎥⎦
 

x[1]
 
x[2]
 
x[3] 1 −j −1 j a3 

1
 1
 1
0
 0
 0
2π−jkΩ0n =
 −jk x[n]j−kn x[n]e
 n =
ak == ak+4 Ne
4
 4
 4
 
n=<4> n=<4> n=<4> ⎡⎤⎡ 

a0 
⎡⎤ ⎤


1 1 1 1
 x[0]
 ⎢⎢⎢⎣
 

a1
⎥⎥⎥⎦
 

1
 = 4 

⎢⎢⎢⎣
 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎥⎥⎥⎦
 

1 −j −1
 j
 

1 −1 1 −1
 

x[1]
 
x[2]
 a2 

a3 1 j −1 −j x[3] 

These matrices are inverses of each other. 
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Discrete-Time Frequency Representations
 

Similarities and differences between CT and DT. 

DT frequency response 

• vector diagrams (similar to CT) 

• frequency response on unit circle in z-plane (jω axis in CT) 

DT Fourier series 

• represent signal as sum of harmonics (similar to CT) 

• finite number of periodic harmonics (unlike CT) 

• finite sum (unlike CT) 

The finite length of DT Fourier series make them especially useful 

for signal processing! (more on this next time) 
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