6.003: Signals and Systems

DT Fourier Representations

November 10, 2011



Mid-term Examination #3

Wednesday, November 16, 7:30-9:30pm,

No recitations on the day of the exam.

Coverage: Lectures 1-18
Recitations 1-16
Homeworks 1-10

Homework 10 will not be collected or graded.
Solutions will be posted.

Closed book: 3 pages of notes (8%

Conflict? Contact before Friday, Nov. 11, 5pm.
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Review: DT Frequency Response

The frequency response of a DT LTI system is the value of the
system function evaluated on the unit circle.

cos(Qn) —»| H(z) = [H(e7%)| cos (Qn+4ﬂ(eiﬂ))

H(e/") = H(2)|,_j0



Comparision of CT and DT Frequency Responses

CT frequency response: H(s) on the imaginary axis, i.e., s = jw.

DT frequency response: H(z) on the unit circle, i.e., z = e,

w s-plane z-plane
H(jw)| ()
AN
—_— | —




Check Yourself

1—
A system H(z) = @z

has the following pole-zero diagram.

z-plane

[ Classify this system as one of the following filter types. j

1. high pass 2. low pass
3. band pass 4. all pass
5. band stop 0. none of the above
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Check Yourself

Classify the system ...
1—
H(Z) _ az

zZ—aQa

Find the frequency response:
0 1—ael®? q e 7 —a +— complex
HEe)l)=——=¢el*" ——— .
el —q ei? —q <+ conjugates
Because complex conjugates have equal magnitudes, \H(ejQ)\ =1.

— all-pass filter



Check Yourself

1—az

A system H(z) = —— has the following pole-zero diagram.

z-plane

[ Classify this system as one

of the following filter types.

1. high pass
3. band pass
5. band stop

2. low pass
4. all pass
0. none of the above
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Effects of Phase

z-plane

I

I
/

H(z) = 1;_22 —> y[n]
|H(e7Y)]
1
At
/ H(I%?)
| 1,
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Effects of Phase




Effects of Phase

H(z)

1—az

z— Qa

http://public.research.att.com/~ttsweb/tts/demo.php
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Effects of Phase

zln] —>| H(z) = 12__622 —> y[n]
yln]

artificial speech synthesized by Robert Donovan
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Effects of Phase

zln] —| 2?27 = y[n] = z[-n]

artificial speech synthesized by Robert Donovan
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Effects of Phase

zln] —| 2?27 = y[n] = z[-n]

How are the phases of X and Y related?



Effects of Phase

How are the phases of X and Y related?

aj = Z [n]e Tk on

n

b, = Z:r[—n]e_jk%” = Zw[m]ejkgom =a_y

n m

Flipping z[n] about n =0 flips a; about k£ = 0.
Because z[n| is real-valued, a; is conjugate symmetric: a_j, = aj.

bp=a_j =aj, = |ay e =74 %

The angles are negated at all frequencies.
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Review: Periodicity

DT frequency responses are periodic functions of Q, with period 2.

If Qo = Q1 4+ 27k where k is an integer then
H(e7%2) = H(eI1H2mh)y = (eI i2mhy = ()
The periodicity of H(e?) results because H(e7?) is a function of /%,

which is itself periodic in Q. Thus DT complex exponentials have
many ‘“aliases.”

e — i +2mk) _ Q1 d2mk _ i1

Because of this aliasing, there is a “highest” DT frequency: Q) = T.



Review: Periodic Sinusoids

There are (only) N distinct complex exponentials with period N.

(There were an infinite number in CT!)

If y[n] = e/ is periodic in N then
yln] = eI = y[n + N] = eIUHN) = ¢ Jng JON

and ¢72N must be 1, and ¢/ must be one of the N* roots of 1.

Example: N =28
z-plane

Y

a




Review: DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes

and phases of harmonic components.

DT Fourier Series

1 s
k= AUtN = 3 Z zn]e M0 0y = ~

z[n]=z[n+ N| = Z agelkon
k=<N>

(“analysis” equation)

(“synthesis” equation)



DT Fourier Series

DT Fourier series have simple matrix interpretations.

zln| =zn+4] = Z ageltn = Z akejk% Z apj™

k=<4> k=<4> k=<4>
x[0] 1 1 1 1 ag
1| |1 § -1 —j al
2] |1 -1 1 -1 |as
x[3] 1 -5 -1 g as

n=<4> n=<4> n=<4>
ag 11 1 17 [z[0]
al 1|1 —j -1 4 x[1]
as| 4|1 -1 1 —1] |=z[2]
as 1 5 =1 —j x[3]

These matrices are inverses of each other.
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Scaling

DT Fourier series are important computational tools.
However, the DT Fourier series do not scale well with the length N.

1 3 —jkQ L 3 e kZEn _ L 3 —k
ak:ak+2=§ l'[n}e JREHON — 5 e N2 = 5 Q:[n](—l) "
n=<2> n=<2> n=<2>

l=il A L]

1 y 1 a2, 1 ~
U = Ay = > alnje 7’“90”:1 > e 4”:Z > an]i

n=<4> n=<4> n=<4>
ag 1 1 1 17 [z[0]
al 1|1 —j -1 4 z[1]
as| 4|1 -1 1 —1] |=z[2]
as 1§ -1 —j]| |23

Number of multiples increases as N2,
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Fast Fourier “Transform”

Exploit structure of Fourier series to simplify its calculation.

Divide FS of length 2N into two of length N (divide and conquer).

Matrix formulation of 8point FS:

] [WEOWe Wl W wh Wl W wey rafol]
¢l wY owd owgowg owgd owg wi w1
2 wo w2 owi owg o wd wE o owid wi| |22
s | _ W owg owg owyg owyg Wi Wy wg | |af3
ca wQ owg owd o owgd ow owi o owi wi| | 2[4
cs wd wg wg owg wi wi o wg wg| |z
c6 wy wi o wg o wg owQ wi wi wg| | z[6]
Lerd LWl wd wg wg o owg owg wg wil L7

_j2m
where Wy =e /N

8 x 8 = 64 multiplications
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FFT

Divide into two 4-point series (divide and conquer).

Even-numbered entries in z[n]:

ag Wf
al WE
as N Wf
as Wf

bo WZ?
b1 Wy
by | | WP
b3 wy

Sum of multiplications =2 x (4 x 4) = 32: fewer than the previous 64.

Wy
WS

4
wi
Wi

R T T

8

8 8 8

8

[
[
[
[

SN

[=2)

1

w

5

]
}
]
7]



FFT

Break the original 8-point DTFS coefficients ¢, into two parts:
CL = dk + eg

where d;, comes from the even-numbered z[n| (e.g9., a;) and e, comes
from the odd-numbered z[n| (e.g., b)
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FFT

The 4-point DTFS coefficients a5 of the even-numbered z[n]

ao
ai
a2

as

contribute to the 8-point DTFS coefficients dy:

X

8

8

T

23

Wy
Wy
Wy
wg

B a8 o888 B s

8

B 2 A R\ e =)

~

SN O

B N R
N

s
=

[=2)
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FFT

The 4-point DTFS coefficients a5 of the even-numbered z[n]

ag WA?
al Wf
a9 - WE
as Wf

-y _
dq w.
do W,
ds W,
d| | W
ds W,
dg W,

L d7 | L W,

Wy
Wy
wi
Wi
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FFT

The 4-point DTFS coefficients a5 of the even-numbered z[n]

ap w) w w{ wl[z[o] w) Wy
ap | (WP owlbo owgo o owi(|x2]] | wg W
ag | | WY w2 ow) WE||a[4]| |wd Wi
as wY wi owi o wj}]|zx6] we wé

contribute to the 8-point DTFS coefficients dy:

rdol [ao] WY we we wy
dy al wY w2 wi we
da as wY wg wy Wi
d3 | |az| | WQ wg wi w3
dy|  |ao| |WY wY wY wY
ds al wY w2 Wi wg
dg as wY wi wY wi
Ld7] Llagd LW) wg Wi w2
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FFT

The 4-point DTFS coefficients a5 of the even-numbered z[n]

ap w) w w{ wl[z[o] w) Wy
ap | (WP owlbo owgo o owi(|x2]] | wg W
ag | | WY w2 ow) WE||a[4]| |wd Wi
as wY wi owi o wj}]|zx6] we wé

contribute to the 8-point DTFS coefficients dy:

[ do T [ ag ] r g W80 WSO Wé)
dy al wY w2 wi we
da as wY wg wY wg
dz | |asl|| | Wg wg wi w2
dy| a0 l| | WY wY wY wY
ds al wY w2 Wi wg
dg as wY wi wY wi

Ldz]  Llagd] W) wg Wi w2
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FFT

The e, components result from the odd-number entries in z[n].

(bl [W) WP W) W[«

1]
bu| | WP Wi wi Wi faf3) | W oW Wy W
bo | (WP Wi owp wil|azp) | |WE Wi Wl Wy
o3 LW owp owi owi [lem] (W w§ wg wi]
0 (W WY W W wg Wy WP Wl ralo);
e1 we owd owEowg owi o owg wd w1
e wY wg owg wg¢ o wd w2 owg wi| |2
es| |wg wg w§ wi owg wi wi w§||a[3]
eq| (WY owE owd o owg o owd o owg o wQ wi| |z
es we wd wi owid wi wg o wd wg| | x5
e6 we wd owg w2 owi wg wg w2 | (6]
Lerd LW wg wd wg wg wi wZ wil L7
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FFT

The e, components result from the odd-number entries in z[n].

bo w) w) w) wl=z[] wi wi wi Wy
bu| (WP owlbo owg o owi|apB] W Wi owg W
bo | (WP wE owQ w25 |W) wg Wl wy
bs ] LW owE w2 owi]lem] (W) wg w§ wZ
reol T Wy wY Wy W1
el Wy w3 W W || =[]
e w2 wg w2 wg

e3| w3 Wy wy w2 | | 23]
es | Wy wg wg Wi

es 1143 w{ Wi w3 | | z[5]
€6 W W Wy w2

Lerd L wd wg w3 Wil La[7]
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FFT

The e, components result from the odd-number entries in z[n].

bo [W9 WP WP W[
by wd wlp w2 owp||a
b | | WP WE W) W2 ||
s | WY WP owE w7

re0] Wl WE oW W v

e1 W4 by Wy w3 w2 Wy | | =[1]
e W2 by w2 W w2 we

es | _ | Wibs| _ w3 Wy Wy wg | | 23]
e4 Wi bo wg wg wg wg

es W by wg w{ Wi w3 | | z[5]
€6 W by Wy w2 Wy w2

Lerd  LWdbsl L W W w3 w1 La[7]
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FFT

The e, components result from the odd-number entries in z[n].

bl [WP W) w) W Tz
by wd wlp w2 owp||a
by wo w2 o w) w2||az
Los ] LWy wi o Wi Wi ] Lal7

eo] [Weboql 10 WY wY Wy wWo1 T

e1 W4 by Wy w3 w2 Wy | | =[1]
e W2 by w2 wg wZ we

es W3 bs w3 Wy wy wg | | 23]
ea | | Wi || Wi Wi Wi Wi

es W by wg w{ Wi w3 | | z[5]
e6 WS by W w2 wg w2

Lerd  LWdnsd] L Wy W w3 Wil La[7)
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FFT

Combine a; and b, to get c;.

KN rdo +eo ] rag 'Wé)bo'
c1 di + ey ay Wi by
c9 do + e as W82 bo
3|  |dz+es| |a3 4 Wg’ b3
ca|  |dites|  |ag W84 bo
c5 ds + es5 ai W85 b1
cg de + eg a W86 b

L c7 ] L d7 + e7 Lag _ngg_

FFT procedure:

e compute a; and b 2 x (4 x 4) = 32 multiplies

e combine ¢ = aj, + Wb 8 multiples

e total 40 multiplies: fewer than the orginal 8 x 8 = 64 multiplies
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Scaling of FFT algorithm

How does the new algorithm scale?

Let M(N)= number of multiplies to perform an N point FFT.

M(1) =0

M(2) =2M(1) +2 =2

M(4) =2M(2)+4=2x4

M(8) = 2M(4) +8 =3 x 8
M(16) = 2M(8) + 16 = 4 x 16
M(32) = 2M(16) + 32 = 5 x 32
M(64) = 2M (32) + 64 = 6 x 64

M(128) = 2M (64) + 128 = 7 x 128

M(N) = (logg N) x N
Significantly smaller than N2 for N large.
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Fourier Transform: Generalize to Aperiodic Signals

An aperiodic signal can be thought of as periodic with infinite period.

Let z[n] represent an aperiodic signal DT signal.

Then z[n| = ngnooxN[n]
33



Fourier Transform

Represent zpy[n] by its Fourier series.

—N1 Np N
Ny
1 27 1n 1 —]Q—Kkn 1
ap = DNl N ¥ 2 =5
N n=—N1
sin
?
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Fourier Transform

Doubling period doubles # of harmonics in given frequency interval.

znn]
1
n
—N1 N N
Np 1
1 _2m 1 _2r 1 sin(Ny+3)Q
_ Jkn _ © Jakn — 2
ay N;xz\r[n]e v ZN ~ 10
n=—N
Nay, sin%Q
k
2T or
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Fourier Transform

As N — oo, discrete harmonic amplitudes — a continuum E(1).




Fourier Transform

As N — oo, synthesis sum — integral.

n=<N> n=<N>

1 ;2
)= Y NE(Q)eJJ\%”: 3
k=<N>“=—— k=<N>

ag



Fourier Transform

Replacing E(Q) by X (e7?) yields the DT Fourier transform relations.

o0
X ()= Z z[n]e” I (“analysis" equation)

n=—oo

m[n]:% , X(ejﬂ)ejQ"dQ (“synthesis” equation)
™
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Relation between Fourier and Z Transforms

If the Z transform of a signhal exists and if the ROC includes the
unit circle, then the Fourier transform is equal to the Z transform
evaluated on the unit circle.

Z transform:

DT Fourier transform:
[ee]

X = 3" amle M =H(2) _ 0

n=—oo
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Relation between Fourier and Z Transforms

Fourier transform “inherits” properties of Z transform.

Property z[n) X(z) X (eI
Linearity azi[n] +bxa[n]  aXi(s)+bXa(s)  aXy(ed?) +bXo (eI
Time shift x[n — ng) 270X (2) e~I8m0 X (¢74)
Multiply by n nx[n| fziX(z) jiX(ejQ)
dz ds)

Convolution (z1 * z2)[n] X1(2) x Xo(2) X1(e79) x Xo(eI%)

40



DT Fourier Series of Images

Magnitude




DT Fourier Series of Images

Magnitude

Uniform Angle
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DT Fourier Series of Images

Different

Magnitude

Angle
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DT Fourier Series of Images




DT Fourier Series of Images

Magnitude




DT Fourier Series of Images

Different

Magnitude

Angle
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Fourier Representations: Summary

Thinking about signals by their frequency content and systems as
filters has a large number of practical applications.
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