6.003: Signals and Systems

DT Fourier Representations

November 10, 2011

Mid-term Examination #3

Wednesday, November 16, 7:30-9:30pm,

No recitations on the day of the exam.

Coverage: Lectures 1–18 Recitations 1–16 Homeworks 1–10

Homework 10 will not be collected or graded. Solutions will be posted.

Closed book: 3 pages of notes $(8\frac{1}{2})$

Conflict? Contact before Friday, Nov. 11, 5pm.

Review: DT Frequency Response

The frequency response of a DT LTI system is the value of the system function evaluated on the unit circle.

$$\cos(\Omega n) \longrightarrow H(z) \longrightarrow |H(e^{j\Omega})| \cos\left(\Omega n + \angle H(e^{j\Omega})\right)$$
$$H(e^{j\Omega}) = |H(z)|_{z=e^{j\Omega}}$$

Comparision of CT and DT Frequency Responses

CT frequency response: H(s) on the imaginary axis, i.e., $s = j\omega$. DT frequency response: H(z) on the unit circle, i.e., $z = e^{j\Omega}$.

Check Yourself

A system $H(z) = \frac{1-az}{z-a}$ has the following pole-zero diagram. *z*-plane Classify this system as one of the following filter types. 1. high pass 2. low pass 3. band pass 4. all pass 0. none of the above 5. band stop

Check Yourself

Classify the system ...

$$H(z) = \frac{1 - az}{z - a}$$

Find the frequency response:

$$H(e^{j\Omega}) = \frac{1 - ae^{j\Omega}}{e^{j\Omega} - a} = e^{j\Omega} \frac{e^{-j\Omega} - a}{e^{j\Omega} - a} \xleftarrow{\leftarrow} \text{complex}$$

Because complex conjugates have equal magnitudes, $\left|H(e^{j\Omega})\right|=1.$ \rightarrow all-pass filter

Check Yourself

A system $H(z) = \frac{1-az}{z-a}$ has the following pole-zero diagram. *z*-plane Classify this system as one of the following filter types. 4 1. high pass 2. low pass 3. band pass 4. all pass 0. none of the above 5. band stop

$$x[n] \longrightarrow H(z) = \frac{1-az}{z-a} \longrightarrow y[n]$$

$$x[n] \longrightarrow H(z) = \frac{1-az}{z-a} \longrightarrow y[n]$$

http://public.research.att.com/~ttsweb/tts/demo.php

$$x[n] \longrightarrow H(z) = \frac{1-az}{z-a} \longrightarrow y[n]$$

artificial speech synthesized by Robert Donovan

artificial speech synthesized by Robert Donovan

How are the phases of X and Y related?

How are the phases of X and Y related?

$$a_k = \sum_n x[n]e^{-jk\Omega_0 n}$$

$$b_k = \sum_n x[-n]e^{-jk\Omega_0 n} = \sum_m x[m]e^{jk\Omega_0 m} = a_{-k}$$

Flipping x[n] about n = 0 flips a_k about k = 0. Because x[n] is real-valued, a_k is conjugate symmetric: $a_{-k} = a_k^*$.

$$b_k = a_{-k} = a_k^* = |a_k| e^{-j \angle a_k}$$

The angles are negated at all frequencies.

Review: Periodicity

DT frequency responses are periodic functions of Ω , with period 2π .

If $\Omega_2 = \Omega_1 + 2\pi k$ where k is an integer then

$$H(e^{j\Omega_2}) = H(e^{j(\Omega_1 + 2\pi k)}) = H(e^{j\Omega_1}e^{j2\pi k}) = H(e^{j\Omega_1})$$

The periodicity of $H(e^{j\Omega})$ results because $H(e^{j\Omega})$ is a function of $e^{j\Omega}$, which is itself periodic in Ω . Thus DT complex exponentials have many "aliases."

$$e^{j\Omega_2} = e^{j(\Omega_1 + 2\pi k)} = e^{j\Omega_1}e^{j2\pi k} = e^{j\Omega_1}$$

Because of this aliasing, there is a "highest" DT frequency: $\Omega = \pi$.

Review: Periodic Sinusoids

There are (only) N distinct complex exponentials with period N. (There were an infinite number in CT!)

If $y[n] = e^{j\Omega n}$ is periodic in N then

$$y[n] = e^{j\Omega n} = y[n+N] = e^{j\Omega(n+N)} = e^{j\Omega n}e^{j\Omega N}$$

and $e^{j\Omega N}$ must be 1, and $e^{j\Omega}$ must be one of the N^{th} roots of 1. Example: N = 8

Review: DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

DT Fourier Series

 $a_k = a_{k+N} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n} \quad ; \quad \Omega_0 = \frac{2\pi}{N} \quad (\text{``analysis'' equation})$ $x[n] = x[n+N] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} \quad (\text{``synthesis'' equation})$

DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$\begin{split} x[n] &= x[n+4] = \sum_{k=<4>} a_k e^{jk\Omega_0 n} = \sum_{k=<4>} a_k e^{jk\frac{2\pi}{4}n} = \sum_{k=<4>} a_k j^{kn} \\ \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & j & -1 & -j\\ 1 & -1 & 1 & -1\\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{N}n} = \frac{1}{4} \sum_{n=<4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & -j & -1 & j\\ 1 & -1 & 1 & -1\\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} \end{split}$$

These matrices are inverses of each other.

Scaling

DT Fourier series are important computational tools.

However, the DT Fourier series do not scale well with the length N.

$$\begin{aligned} a_k &= a_{k+2} = \frac{1}{2} \sum_{n=<2>} x[n] e^{-jk\Omega_0 n} = \frac{1}{2} \sum_{n=<2>} e^{-jk\frac{2\pi}{2}n} = \frac{1}{2} \sum_{n=<2>} x[n](-1)^{-kn} \\ \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{4}n} = \frac{1}{4} \sum_{n=<4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} \end{aligned}$$

Number of multiples increases as N^2 .

Fast Fourier "Transform"

Exploit structure of Fourier series to simplify its calculation.

Divide FS of length 2N into two of length N (divide and conquer).

Matrix formulation of 8-point FS:

$\lceil c_0 \rceil$	1	ΓW_8^0	W_{8}^{0}	W_{8}^{0}	W_{8}^{0}	W_{8}^{0}	W_8^0	W_{8}^{0}	W_8^0 ך	$\begin{bmatrix} x[0] \end{bmatrix}$
c_1	-	W_8^0	W_8^1	W_{8}^{2}	W_{8}^{3}	W_8^4	W_{8}^{5}	W_{8}^{6}	W_8^7	x[1]
c_2		W_8^0	W_{8}^{2}	W_8^4	W_{8}^{6}	W_8^0	W_{8}^{2}	W_{8}^{4}	W_8^6	x[2]
c_3	=	W_8^0	W_{8}^{3}	W_{8}^{6}	W_8^1	W_{8}^{4}	W_{8}^{7}	W_{8}^{2}	W_8^5	x[3]
c_4		W_8^0	W_{8}^{4}	W_8^0	W_8^4	W_8^0	W_8^4	W_{8}^{0}	W_8^4	x[4]
c_5		W_{8}^{0}	W_{8}^{5}	W_{8}^{2}	W_{8}^{7}	W_8^4	W_8^1	W_{8}^{6}	W_8^3	x[5]
c_6		W_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	x[6]
$\lfloor c_7 \rfloor$		$\lfloor W_8^0$	W_{8}^{7}	W_{8}^{6}	W_{8}^{5}	W_8^4	W_{8}^{3}	W_{8}^{2}	W_8^1	$\lfloor x[7] \rfloor$
where $W_N = e^{-j rac{2\pi}{N}}$										

 $8 \times 8 = 64$ multiplications

Divide into two 4-point series (divide and conquer).

Even-numbered entries in x[n]:

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

Odd-numbered entries in x[n]:

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix}$$

Sum of multiplications $= 2 \times (4 \times 4) = 32$: fewer than the previous 64.

Break the original 8-point DTFS coefficients c_k into two parts:

$$c_k = d_k + e_k$$

where d_k comes from the even-numbered x[n] (e.g., a_k) and e_k comes from the odd-numbered x[n] (e.g., b_k)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$		$\lceil W_8^0$	W_{8}^{0}	W_8^0	W_8^0	W_{8}^{0}	W_8^0	W_{8}^{0}	W_{8}^{0}]	$ \left[r x[0] \right] $
d_1		W_{8}^{0}	W_8^1	W_{8}^{2}	W_{8}^{3}	W_8^4	W_{8}^{5}	W_{8}^{6}	W_8^7	x[1]
d_2		W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_8^6	x[2]
d_3	_	W_{8}^{0}	W_{8}^{3}	W_{8}^{6}	W_8^1	W_{8}^{4}	W_{8}^{7}	W_{8}^{2}	W_8^5	x[3]
d_4	_	W_8^0	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_8^4	x[4]
d_5		W_{8}^{0}	W_{8}^{5}	W_{8}^{2}	W_{8}^{7}	W_{8}^{4}	W_8^1	W_{8}^{6}	W_8^3	x[5]
d_6		W_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_8^2	x[6]
$\lfloor d_7 \rfloor$		W_8^0	W_{8}^{7}	W_{8}^{6}	W_{8}^{5}	W_{8}^{4}	W_{8}^{3}	W_{8}^{2}	W_8^1	$\lfloor x[7] \rfloor$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$	ΓW_8^0	W_8^0	W_8^0	W_8^0	$ \lceil x[0] \rceil$
d_1	W_{8}^{0}	W_{8}^{2}	W_8^4	W_{8}^{6}	
d_2	W_{8}^{0}	W_8^4	W_8^0	W_8^4	x[2]
d_3	W_8^0	W_{8}^{6}	W_8^4	W_{8}^{2}	
d_4	W_8^0	W_8^0	W_8^0	W_8^0	x[4]
d_5	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	
d_6	W_8^0	W_8^4	W_8^0	W_8^4	x[6]
$\lfloor d_7 \rfloor$	LW_8^0	W_{8}^{6}	W_8^4	W_{8}^{2}	

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$		$\lceil a_0 \rceil$		$\lceil W_8^0$	W_8^0	W_8^0	W_8^0	$ \lceil x[0] \rceil$
d_1		a_1		W_{8}^{0}	W_{8}^{2}	W_8^4	W_{8}^{6}	
d_2		a_2		W_{8}^{0}	W_8^4	W_8^0	W_8^4	x[2]
d_3	_	a_3	_	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	
d_4	_	a_0	=	W_8^0	W_8^0	W_8^0	W_8^0	x[4]
d_5		a_1		W_8^0	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	
d_6		a_2		W_8^0	W_8^4	W_8^0	W_8^4	x[6]
$\lfloor d_7 \rfloor$		$\lfloor a_3 \rfloor$		W_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$	[a_0	$\lceil W_8^0 \rceil$	W_8^0	W_8^0	W_8^0	$ \lceil x[0] \rceil $
d_1		a_1	W_{8}^{0}	W_{8}^{2}	W_8^4	W_{8}^{6}	
d_2		a_2	W_{8}^{0}	W_8^4	W_8^0	W_8^4	x[2]
d_3	_	a_3	$_{-}$ W_{8}^{0}	W_{8}^{6}	W_8^4	W_{8}^{2}	
d_4	=	a_0	$= W_8^0 $	W_8^0	W_8^0	W_8^0	x[4]
d_5		a_1	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	
d_6		a_2	W_{8}^{0}	W_8^4	W_8^0	W_{8}^{4}	x[6]
$\lfloor d_7 \rfloor$. <i>a</i> ₃]	LW_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	

$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$		$W_4^0 \ W_4^0 \ W_4^0 \ W_4^0 \ W_4^0$	$W_4^0 \ W_4^1 \ W_4^2 \ W_4^2 \ W_4^3$	$W_4^0 \ W_4^2 \ W_4^0 \ W_4^0 \ W_4^2$	$\begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^2 \\ W_4^1 \end{bmatrix}$	$\begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix}$	$= \begin{bmatrix} W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \end{bmatrix}$	$W_8^0 \ W_8^2 \ W_8^2 \ W_8^4 \ W_8^6 \ W_8^6$	$W_8^0 \ W_8^4 \ W_8^0 \ W_8^0 \ W_8^4$	$ \begin{bmatrix} W_8^0 \\ W_8^6 \\ W_8^4 \\ W_8^2 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} $	
$\lceil e_0 \rceil$	1	$\int W_8^0$	W_{8}^{0}	W_{8}^{0}	W_{8}^{0}	W_8^0	W_8^0	W_8^0	W_8^0 ך	[x[0]]	
e_1		W_8^0	W_8^1	W_8^2	W_8^3	W_8^4	$W_8^{\overline{5}}$	W_{8}^{6}	W_8^7	x[1]	
e_2		W_8^0	W_{8}^{2}	W_8^4	W_{8}^{6}	W_8^0	W_{8}^{2}	W_{8}^{4}	W_8^6	x[2]	
e_3		W_{8}^{0}	W_{8}^{3}	W_{8}^{6}	W_8^1	W_8^4	W_{8}^{7}	W_{8}^{2}	W_8^5	x[3]	
e_4	=	W_8^0	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	W_{8}^{0}	W_8^4	x[4]	
e_5		W_8^0	W_{8}^{5}	W_{8}^{2}	W_{8}^{7}	W_8^4	W_8^1	W_{8}^{6}	W_8^3	x[5]	
e_6		W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	x[6]	
$\lfloor e_7 \rfloor$]	$\lfloor W_8^0$	W_{8}^{7}	W_{8}^{6}	W_{8}^{5}	W_8^4	W_{8}^{3}	W_{8}^{2}	W_8^1	$\lfloor x[7] \rfloor$	

$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_4^0 \\ W_4^0 \\ W_4^0 \\ W_4^0 \end{bmatrix}$	$\begin{array}{ccc} W^0_4 & W^0_4 \\ W^1_4 & W^2_4 \\ W^2_4 & W^0_4 \\ W^3_4 & W^2_4 \end{array}$	$ \begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} $	$= \begin{bmatrix} W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \end{bmatrix}$	$\begin{array}{ccc} W_8^0 & W_8^0 \\ W_8^2 & W_8^4 \\ W_8^4 & W_8^0 \\ W_8^6 & W_8^4 \end{array}$	$ \begin{bmatrix} W_8^0 \\ W_8^6 \\ W_8^4 \\ W_8^2 \\ W_8^2 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} $
$\lceil e_0 \rceil \rceil$	W_8^0	W_8^0	W_{8}^{0}	W_8^0 ך	ГЛ
$ e_1 $	W_8^1	W_{8}^{3}	W_{8}^{5}	$\begin{bmatrix} W_8^0\\ W_8^7 \end{bmatrix}$	x[1]
e_2	W_{8}^{2}	W_{8}^{6}	W_{8}^{2}	W_8^6	
e_3	W_{8}^{3}	W_8^1	W_{8}^{7}	W_8^5	x[3]
$ e_4 $ –	W_{8}^{4}	W_8^4	W_{8}^{4}	W_8^4	
e_5	W_{8}^{5}	W_{8}^{7}	W_{8}^{1}	W_8^3	x[5]
$ e_6 $	W_{8}^{6}	W_{8}^{2}	W_{8}^{6}	W_{8}^{2}	
$\lfloor e_7 \rfloor$	W_{8}^{7}	$egin{array}{c} W_8^2 \ W_8^5 \ W_8^5 \end{array}$	W_{8}^{3}	W_8^1	$\lfloor x[7] \rfloor$

Combine a_k and b_k to get c_k .

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{bmatrix} = \begin{bmatrix} d_0 + e_0 \\ d_1 + e_1 \\ d_2 + e_2 \\ d_3 + e_3 \\ d_4 + e_4 \\ d_5 + e_5 \\ d_6 + e_6 \\ d_7 + e_7 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} W_8^0 b_0 \\ W_8^1 b_1 \\ W_8^2 b_2 \\ W_8^3 b_3 \\ W_8^4 b_0 \\ W_8^5 b_1 \\ W_8^6 b_2 \\ W_8^7 b_3 \end{bmatrix}$$

FFT procedure:

- compute a_k and b_k : $2 \times (4 \times 4) = 32$ multiplies
- combine $c_k = a_k + W_8^k b_k$: 8 multiples
- total 40 multiplies: fewer than the orginal $8 \times 8 = 64$ multiplies

Scaling of FFT algorithm

How does the new algorithm scale?

Let M(N) = number of multiplies to perform an N point FFT. M(1) = 0M(2) = 2M(1) + 2 = 2 $M(4) = 2M(2) + 4 = 2 \times 4$ $M(8) = 2M(4) + 8 = 3 \times 8$ $M(16) = 2M(8) + 16 = 4 \times 16$ $M(32) = 2M(16) + 32 = 5 \times 32$ $M(64) = 2M(32) + 64 = 6 \times 64$ $M(128) = 2M(64) + 128 = 7 \times 128$

 $M(N) = (\log_2 N) \times N$

. . .

Significantly smaller than N^2 for N large.

Fourier Transform: Generalize to Aperiodic Signals

An aperiodic signal can be thought of as periodic with infinite period.

Let x[n] represent an aperiodic signal DT signal.

'Periodic extension'':
$$x_N[n] = \sum_{k=-\infty} x[n+kN]$$

Then
$$x[n] = \lim_{N \to \infty} x_N[n].$$

Fourier Transform

Represent $x_N[n]$ by its Fourier series.

Fourier Transform

Doubling period doubles # of harmonics in given frequency interval.

Fourier Transform

As $N \to \infty$, discrete harmonic amplitudes \to a continuum $E(\Omega)$.

Fourier Transform

As $N \to \infty$, synthesis sum \to integral.

Fourier Transform

Replacing $E(\Omega)$ by $X(e^{\,j\Omega})$ yields the DT Fourier transform relations.

$$\begin{split} X(e^{j\Omega}) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} & (\text{``analysis'' equation}) \\ x[n] &= \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega & (\text{``synthesis'' equation}) \end{split}$$

Relation between Fourier and Z Transforms

If the Z transform of a signal exists and if the ROC includes the unit circle, then the Fourier transform is equal to the Z transform evaluated on the unit circle.

Z transform:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

DT Fourier transform:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = H(z) |_{z=e^{j\Omega}}$$

Relation between Fourier and Z Transforms

Fourier transform "inherits" properties of Z transform.

Property	x[n]	X(z)	$X(e^{j\Omega})$
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(s) + bX_2(s)$	$aX_1(e^{j\Omega}) + bX_2(e^{j\Omega})$
Time shift	$x[n-n_0]$	$z^{-n_0}X(z)$	$e^{-j\Omega n_0}X(e^{j\Omega})$
Multiply by n	nx[n]	$-z\frac{d}{dz}X(z)$	$j\frac{d}{d\Omega}X(e^{j\Omega})$
Convolution	$(x_1 * x_2)[n]$	$X_1(z) \times X_2(z)$	$X_1(e^{j\Omega}) \times X_2(e^{j\Omega})$

Magnitude

Magnitude

Uniform Angle

Uniform Magnitude

Different Magnitude

Magnitude

Magnitude

Different Magnitude

Fourier Representations: Summary

Thinking about signals by their frequency content and systems as filters has a large number of practical applications.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.