Discrete-time Signals and Systems

ii

Discrete-time Signals and Systems An Operator Approach

Sanjoy Mahajan and Dennis Freeman Massachusetts Institute of Technology

Typeset in Palatino and Euler by the authors using ConTEXt and PDFTEX

© Copyright 2009 Sanjoy Mahajan and Dennis Freeman

Source revision: 66261db0f9ed+ (2009-10-18 13:33:48 UTC)

Discrete-time Signals and Systems by Sanjoy Mahajan and Dennis Freeman (authors) and ?? (publisher) is licensed under the ... license.

Brief contents

	Preface	ix
1	Difference equations	1
2	Difference equations and modularity	17
3	Block diagrams and operators: Two new representations	33
4	Modes	51
5	Repeated roots	63
6	The perfect (sine) wave	71
7	Control	83
8	Proportional and derivative control	95
	Bibliography	105
	Index	107

vi

Contents

	Preface	ix
1	Difference equations	1
	1.1 Rabbits	2
	1.2 Leaky tank	7
	1.3 Fall of a fog droplet	11
	1.4 Springs	14
2	Difference equations and modularity	17
	2.1 Modularity: Making the input like the output	17
	2.2 Endowment gift	21
	2.3 Rabbits	25
3	Block diagrams and operators: Two new representations	33
	3.1 Disadvantages of difference equations	34
	3.2 Block diagrams to the rescue	35
	3.3 The power of abstraction	40
	3.4 Operations on whole signals	41
	3.5 Feedback connections	45
	3.6 Summary	49
4	Modes	51
	4.1 Growth of the Fibonacci series	52
	4.2 Taking out the big part from Fibonacci	55
	4.3 Operator interpretation	57
	4.4 General method: Partial fractions	59
5	Repeated roots	63
	5.1 Leaky-tank background	64
	5.2 Numerical computation	65
	5.3 Analyzing the output signal	67

	5.4 Deforming the system: The continuity argument	68 70
	5.5 Higher-order cascades	70
6	The perfect (sine) wave	71
	6.1 Forward Euler	72
	6.2 Backward Euler	76
	6.3 Leapfrog	79
	6.4 Summary	82
7	Control	83
	7.1 Motor model with feedforward control	83
	7.2 Simple feedback control	85
	7.3 Sensor delays	87
	7.4 Inertia	90
8	Proportional and derivative control	95
	8.1 Why derivative control	95
	8.2 Mixing the two methods of control	96
	8.3 Optimizing the combination	98
	8.4 Handling inertia	99
	8.5 Summary	103
	Bibliography	105
	Index	107

viii

Preface

This book aims to introduce you to a powerful tool for analyzing and designing systems – whether electronic, mechanical, or thermal.

This book grew out of the 'Signals and Systems' course (numbered 6.003) that we have taught on and off to MIT's Electrical Engineering and Computer Science students.

The traditional signals-and-systems course – for example [17] – emphasizes the analysis of continuous-time systems, in particular analog circuits. However, most engineers will not specialize in analog circuits. Rather, digital technology offers such vast computing power that analogy circuits are often designed through digital simulation.

Digital simulation is an inherently discrete-time operation. Furthermore, almost all fundamental ideas of signals and systems can be taught using discrete-time systems. Modularity and multiple representations , for example, aid the design of discrete-time (or continuous-time) systems. Similarly, the ideas for modes, poles, control, and feedback.

Furthermore, by teaching the material in a context not limited to circuits, we emphasize the generality of these tools. Feedback and simulation abound in the natural and engineered world, and we would like our students to be flexible and creative in understanding and designing these systems.

Therefore, we begin our 'Signals and Systems' course with discrete-time systems, and give our students this book. A fundamental difference from most discussions of discrete-time systems is the approach using operators. Operators make it possible to avoid the confusing notion of 'transform'. Instead, the operator expression for a discrete-time system, and the system's impulse response are two representations for the same system; they are the coordinates of a point as seen from two different coordinate systems. Then a transformation of a system has an active meaning: for example, composing two systems to build a new system.

How to use this book

Aristotle was tutor to the young Alexander of Macedon (later, the Great). As ancient royalty knew, a skilled and knowledgeable tutor is the most effective teacher [3]. A skilled tutor makes few statements and asks many questions, for she knows that questioning, wondering, and discussing promote long-lasting learning. Therefore, questions of two types are interspersed through the book:

questions marked with a \triangleright *in the margin:* These questions are what a tutor might ask you during a tutorial, and ask you to work out the next steps in an analysis. They are answered in the subsequent text, where you can check your solutions and my analysis.

numbered questions: These problems, marked with a shaded background, are what a tutor might ask you to take home after a tutorial. They give further practice with the tool or ask you to extend an example, use several tools together, or resolve paradoxes.

Try lots of questions of both types!

Copyright license

This book is licensed under the ... license.

Acknowledgments

We gratefully thank the following individuals and organizations:

For suggestions and discussions: ...

For the free software for typesetting: Donald Knuth (T_EX); Han The Thanh (PDFT_EX); Hans Hagen and Taco Hoekwater (ConT_EXt); John Hobby (Meta-Post); Andy Hammerlindl, John Bowman, and Tom Prince (asymptote); Richard Stallman (emacs); the Linux and Debian projects.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.