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Let's take a moment to look at a different example.

Automated teller machines allow bank customers to perform a variety of transactions: deposits, withdrawals,

transfers, etc.

Let's consider what happens when two customers try to withdraw $50 from the same account at the same time.

A portion of the bank's code for a withdrawal transaction is shown in the upper right.

This code is responsible for adjusting the account balance to reflect the amount of the withdrawal.

Presumably the check to see if there is sufficient funds has already happened.

What's supposed to happen?

Let's assume that the bank is using a separate process to handle each transaction, so the two withdrawal

transactions cause two different processes to be created, each of which will run the Debit code.

If each of the calls to Debit run to completion without interruption, we get the desired outcome: the first transaction

debits the account by $50, then the second transaction does the same.

The net result is that you and your friend have $100 and the balance is $100 less.

So far, so good.

But what if the process for the first transaction is interrupted just after it's read the balance?

The second process subtracts $50 from the balance, completing that transaction.

Now the first process resumes, using the now out-of-date balance it loaded just before being interrupted.

The net result is that you and your friend have $100, but the balance has only been debited by $50.

The moral of the story is that we need to be careful when writing code that reads and writes shared data since

other processes might modify the data in the middle of our execution.

When, say, updating a shared memory location, we'll need to LD the current value, modify it, then ST the updated

value.

We would like to ensure that no other processes access the shared location between the start of the LD and the

completion of the ST.



The LD/modify/ST code sequence is what we call a "critical section".

We need to arrange that other processes attempting to execute the same critical section are delayed until our

execution is complete.

This constraint is called "mutual exclusion", i.e., only one process at a time can be executing code in the same

critical section.

Once we've identified critical sections, we'll use semaphores to guarantee they execute atomically, i.e., that once

execution of the critical section begins, no other process will be able to enter the critical section until the execution

is complete.

The combination of the semaphore to enforce the mutual exclusion constraint and the critical section of code

implement what's called a "transaction".

A transaction can perform multiple reads and writes of shared data with the guarantee that none of the data will

be read or written by other processes while the transaction is in progress.

Here's the original code to Debit, which we'll modify by adding a LOCK semaphore.

In this case, the resource controlled by the semaphore is the right to run the code in the critical section.

By initializing LOCK to 1, we're saying that at most one process can execute the critical section at a time.

A process running the Debit code WAITs on the LOCK semaphore.

If the value of LOCK is 1, the WAIT will decrement value of LOCK to 0 and let the process enter the critical

section.

This is called acquiring the lock.

If the value of LOCK is 0, some other process has acquired the lock and is executing the critical section and our

execution is suspended until the LOCK value is non-zero.

When the process completes execution of the critical section, it releases the LOCK with a call to SIGNAL, which

will allow other processes to enter the critical section.

If there are multiple WAITing processes, only one will be able to acquire the lock, and the others will still have to

wait their turn.



Used in this manner, semaphores are implementing a mutual exclusion constraint, i.e., there's a guarantee that

two executions of the critical section cannot overlap.

Note that if multiple processes need to execute the critical section, they may run in any order and the only

guarantee is that their executions will not overlap.

There are some interesting engineering issues to consider.

There's the question of the granularity of the lock, i.e., what shared data is controlled by the lock?

In our bank example, should there be one lock controlling access to the balance for all accounts?

That would mean that no one could access any balance while a transaction was in progress.

That would mean that transactions accessing different accounts would have to run one after the other even

though they're accessing different data.

So one lock for all the balances would introduce unnecessary precedence constraints, greatly slowing the rate at

which transactions could be processed.

Since the guarantee we need is that we shouldn't permit multiple simultaneous transactions on the same account,

it would make more sense to have a separate lock for each account, and change the Debit code to acquire the

account's lock before proceeding.

That will only delay transactions that truly overlap, an important efficiency consideration for a large system

processing many thousands of mostly non-overlapping transactions each second.

Of course, having per-account locks would mean a lot of locks!

If that's a concern, we can adopt a compromise strategy of having locks that protect groups of accounts, e.g.,

accounts with same last three digits in the account number.

That would mean we'd only need 1000 locks, which would allow up to 1000 transactions to happen

simultaneously.

The notion of transactions on shared data is so useful that we often use a separate system called a database that

provides the desired functionality.

Database systems are engineered to provide low-latency access to shared data, providing the appropriate

transactional semantics.



The design and implementation of databases and transactions is pretty interesting.

To follow up, I recommend reading about databases on the web.

Returning to our producer/consumer example, we see that if multiple producers are trying to insert characters into

the buffer at the same time, it's possible that their execution may overlap in a way that causes characters to be

overwritten and/or the index to be improperly incremented.

We just saw this bug in the bank example: the producer code contains a critical section of code that accesses the

FIFO buffer and we need to ensure that the critical section is executed atomically.

Here we've added a third semaphore, called LOCK, to implement the necessary mutual exclusion constraint for

the critical section of code that inserts characters into the FIFO buffer.

With this modification, the system will now work correctly when there are multiple producer processes.

There's a similar issue with multiple consumers, so we've used the same LOCK to protect the critical section for

reading from the buffer in the RCV code.

Using the same LOCK for producers and consumers will work, but does introduce unnecessary precedence

constraints since producers and consumers use different indices, i.e., IN for producers and OUT for consumers.

To solve this problem we could use two locks: one for producers and one for consumers.

Semaphores are a pretty handy swiss army knife when it comes to dealing with synchronization issues.

When WAIT and SIGNAL appear in different processes, the semaphore ensures the correct execution timing

between processes.

In our example, we used two semaphores to ensure that consumers can't read from an empty buffer and that

producers can't write into a full buffer.

We also used semaphores to ensure that execution of critical sections -- in our example, updates of the indices IN

and OUT -- were guaranteed to be atomic.

In other words, that the sequence of reads and writes needed to increment a shared index would not be

interrupted by another process between the initial read of the index and the final write.


