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In this final chapter, we’re going to look into optimizing digital systems to make them smaller, faster, higher
performance, more energy efficient, and so on.

It would be wonderful if we could achieve all these goals at the same time and for some circuits we can.

But, in general, optimizing in one dimension usually means doing less well in another.

In other words, there are design tradeoffs to be made.

Making tradeoffs correctly requires that we have a clear understanding of our design goals for the system.

Consider two different design teams:

one is charged with building a high-end graphics card for gaming, the other with building the Apple watch.

The team building the graphics card is mostly concerned with performance and, within limits, is willing to trade-off

cost and power consumption to achieve their performance goals.

Graphics cards have a set size, so there’s a high priority in making the system small enough to meet the required

size, but there’s little to be gained in making it smaller than that.

The team building the watch has very different goals.

Size and power consumption are critical since it has fit on a wrist and run all day without leaving scorch marks on

the wearer’s wrist!

Suppose both teams are thinking about pipelining part of their logic for increased performance.

Pipelining registers are an obvious additional cost.

The overlapped execution and higher t_CLK made possible by pipelining would increase the power consumption

and the need to dissipate that power somehow.

You can imagine the two teams might come to very different conclusions about the correct course of action!

This chapter takes a look at some of the possible tradeoffs.

But as designers you’ll have to pick and choose which tradeoffs are right for your design.

This is the sort of design challenge on which good engineers thrive!

Nothing is more satisfying than delivering more than anyone thought possible within the specified constraints.



Our first optimization topic is power dissipation, where the usual goal is to either meet a certain power budget, or

to minimize power consumption while meeting all the other design targets.

In CMOS circuits, there are several sources of power dissipation, some under our control, some not.

Static power dissipation is power that is consumed even when the circuit is idle, i.e., no nodes are changing value.

Using our simple switch model for the operation of MOSFETs, we’d expect CMOS circuits to have zero static

power dissipation.

And in the early days of CMOS, we came pretty close to meeting that ideal.

But as the physical dimensions of the MOSFET have shrunk and the operating voltages have been lowered, there

are two sources of static power dissipation in MOSFETs that have begun to loom large.

We’ll discuss the effects as they appear in n-channel MOSFETs, but keep in mind that they appear in p-channel

MOSFETs too.

The first effect depends on the thickness of the MOSFET’s gate oxide, shown as the thin yellow layer in the

MOSFET diagram on the left.

In each new generation of integrated circuit technology, the thickness of this layer has shrunk, as part of the

general reduction in all the physical dimensions.

The thinner insulating layer means stronger electrical fields that cause a deeper inversion layer that leads to

NFETs that carry more current, producing faster gate speeds.

Unfortunately the layers are now thin enough that electrons can tunnel through the insulator, creating a small flow

of current from the gate to the substrate.

With billions of NFETs in a single circuit, even tiny currents can add up to non-negligible power drain.

The second effect is caused by current flowing between the drain and source of a NFET that is, in theory, not

conducting because V_GS is less than the threshold voltage.

Appropriately this effect is called sub-threshold conduction and is exponentially related to V_GS - V_TH (a

negative value when the NFET is off).

So as V_TH has been reduced in each new generation of technology, V_GS - V_TH is less negative and the sub-

threshold conduction has increased.



One fix has been to change the geometry of the NFET so the conducting channel is a tall, narrow fin with the gate

terminal wrapped around 3 sides, sometimes referred to as a tri-gate configuration.

This has reduced the sub-threshold conduction by an order-of-magnitude or more, solving this particular problem

for now.

Neither of these effects is under the control of the system designer, except of course, if they’re free to choose an

older manufacturing process!

We mention them here so that you’re aware that newer technologies often bring additional costs that then become

part of the trade-off process.

A designer does have some control over the dynamic power dissipation of the circuit, the amount of power spent

causing nodes to change value during a sequence of computations.

Each time a node changes from 0-to-1 or 1-to-0, currents flow through the MOSFET pullup and pulldown

networks, charging and discharging the output node’s capacitance and thus changing its voltage.

Consider the operation of an inverter.

As the voltage of the input changes, the pullup and pulldown networks turn on and off, connecting the inverter’s

output node to VDD or ground.

This charges or discharges the capacitance of the output node changing its voltage.

We can compute the energy dissipated by integrating the instantaneous power associated with the current flow

into and out of the capacitor times the voltage across the capacitor over the time taken by the output transition.

The instantaneous power dissipated across the resistance of the MOSFET channel is simply I_DS times V_DS.

Here’s the power calculation using the energy integral for the 1-to-0 transition of the output node, where we’re

measuring I_DS using the equation for the current flowing out of the output node’s capacitor: I = C dV/dt.

Assuming that the input signal is a clock signal of period t_CLK and that each transition is taking half a clock cycle,

we can work through the math to determine that power dissipated through the pulldown network is 0.5 f C VDD^2,

where the frequency f tells us the number of such transitions per second,

C is the nodal capacitance, and VDD (the power supply voltage) is the starting voltage of the nodal capacitor.



There’s a similar integral for the current dissipated by the pullup network when charging the capacitor and it yields

the same result.

So one complete cycle of charging then discharging dissipates f C V-squared watts.

Note the all this power has come from the power supply.

The first half is dissipated when the output node is charged and the other half stored as energy in the capacitor.

Then the capacitor’s energy is dissipated as it discharges.

These results are summarized in the lower left.

We’ve added the calculation for the power dissipation of an entire circuit assuming N of the circuit’s nodes change

each clock cycle.

How much power could be consumed by a modern integrated circuit?

Here’s a quick back-of-the-envelope estimate for a current generation CPU chip.

It’s operating at, say, 1 GHz and will have 100 million internal nodes that could change each clock cycle.

Each nodal capacitance is around 1 femto Farad and the power supply is about 1V.

With these numbers, the estimated power consumption is 100 watts.

We all know how hot a 100W light bulb gets!

You can see it would be hard to keep the CPU from overheating.

This is way too much power to be dissipated in many applications, and modern CPUs intended, say, for laptops

only dissipate a fraction of this energy.

So the CPU designers must have some tricks up their sleeve, some of which we’ll see in a minute.

But first notice how important it’s been to be able to reduce the power supply voltage in modern integrated circuits.

If we’re able to reduce the power supply voltage from 3.3V to 1V, that alone accounts for more than a factor of 10

in power dissipation.

So the newer circuit can be say, 5 times larger and 2 times faster with the same power budget!



Newer technologies trends are shown here.

The net effect is that newer chips would naturally dissipate more power if we could afford to have them do so.

We have to be very clever in how we use more and faster MOSFETs in order not to run up against the power

dissipation constraints we face.

To see what we can do to reduce power consumption, consider the following diagram of an arithmetic and logic

unit (ALU) like the one you’ll design in the final lab in this part of the course.

There are four independent component modules, performing the separate arithmetic, boolean, shifting and

comparison operations typically found in an ALU.

Some of the ALU control signals are used to select the desired result in a particular clock cycle, basically ignoring

the answers produced by the other modules.

Of course, just because the other answers aren’t selected doesn’t mean we didn’t dissipate energy in computing

them.

This suggests an opportunity for saving power!

Suppose we could somehow “turn off” modules whose outputs we didn’t need?

One way to prevent them from dissipating power is to prevent the module’s inputs from changing, thus ensuring

that no internal nodes would change

and hence reducing the dynamic power dissipation of the “off” module to zero.

One idea is to put latches on the inputs to each module, only opening a module’s input latch if an answer was

required from that module in the current cycle.

If a module’s latch stayed closed, its internal nodes would remain unchanged, eliminating the module’s dynamic

power dissipation.

This could save a substantial amount of power.

For example, the shifter circuitry has many internal nodes and so has a large dynamic power dissipation.

But there are comparatively few shift operations in most programs, so with our proposed fix, most of the time

those energy costs wouldn’t be incurred.



A more draconian approach to power conservation is to literally turn off unused portions of the circuit by switching

off their power supply.

This is more complicated to achieve, so this technique is usually reserved for special power-saving modes of

operation, where we can afford the time it takes to reliably power the circuity back up.

Another idea is to slow the clock (reducing the frequency of nodal transitions) when there’s nothing for the circuit

to do.

This is particularly effective for devices that interact with the real world, where the time scales for significant

external events are measured in milliseconds.

The device can run slowly until an external event needs attention, then speed up the clock while it deals with the

event.

All of these techniques and more are used in modern mobile devices to conserve battery power without limiting

the ability to deliver bursts of performance.

There is much more innovation waiting to be done in this area, something you may be asked to tackle as

designers!

One last question is whether computation has to consume energy?

There have been some interesting theoretical speculations about this question — see section 6.5 of the course

notes to read more.


