
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Project 1: Multipart Data Transfer

6.005 Elements of Software Construction
Fall 2008

Project 1: Multipart Data Transfer

● Problem
● Purpose
● Specification
● Tasks
● Infrastructure
● Deliverables and Grading
● Hints

Problem

One way to handle the problem of reliably storing large files is to break them into pieces that
are placed on multiple disks or machines. At the same time, a way to download a data stream
more quickly is to break it into parts and download the different parts from different peers.
You're probably familiar with this idea from BitTorrent, the peer-to-peer file sharing protocol,
and it's used in a variety of other contexts. By downloading streams in multiple small parts,

Project 1: Multipart Data Transfer

the chance of the entire download failing is reduced (since each part can be restarted
individually) and load is spread more evenly across the network.

In this project, you will build a multipart downloader that assembles a data stream from
multiple, potentially endless, parts streaming individually from multiple machines. It allows
the same part to be stored redundantly in multiple locations so it can be resilient to failures.
Since the multipart streams you will be downloading may be unbounded and never end, your
program will assemble the stream incrementally from its parts as they are downloaded,
displaying the file or streamed sequence of files (an animated sequence of images, for
example) as the download progresses.

In later projects, you'll be asked to refine the problem itself. In this case, however, the
problem is largely fixed. You are given a particular protocol format (described below) and
required to implement a single method, Multipart.openStream() (although you will likely

wish to design and use other classes to help with this task). Thus your task is essentially the
implementation of a simple API for multipart data transfer. Being an API ('application
programmer interface') simply means your solution can be accessed 'programmatically', that
is by method calls, rather than through a GUI, for example. Separating out an API is
generally good practice because it allows the code to be used in a variety of contexts,
separates the user interface from the core functionality, and makes testing easier. We are
providing you with a simple GUI that can be easily combined with the API. The openStream()

method of the API returns an InputStream for reading from the multipart stream; the GUI
then simply reads serially from this stream, but it could be used more ambitiously, for
interleaving the downloading of multiple streams, for example.

The breakdown of the stream into parts is specified in a special manifest stream. Your code
will have to parse this stream, using it to determine which parts to download. Furthermore,
these parts can themselves be manifest streams, in which case your code should recursively
stream the sub-parts. Both this parsing and the downloading process itself are naturally
expressed as state machines.

A variety of failures can occur, and it will be up to you to figure out what they are and decide
how they should be handled.

Purpose

The purpose of this project is to help you (1) become familiar with the basic tools of software
development in Java -- the language, the Eclipse IDE, and the JUnit testing framework; (2)
get you started programming in Java in a simple imperative style; (3) learn how to conceive

--

--

--

--

Project 1: Multipart Data Transfer

of software systems and the environments in which they operate as state machines, and to
record designs and environmental assumptions with state machine diagrams; (4) begin to
appreciate the importance of testing in building high quality software; (5) acquire some
familiarity with some important computer system concepts and technologies, such as URLs
and HTTP, redundancy and fault tolerance.

Specification

Manifest Streams

A manifest stream specifies how a given stream is broken into parts.

Your program can assume that a URL points to a manifest stream if and only if the stream
has the content type text/parts-manifest or its URL ends with the suffix .parts.

Each part in a manifest stream is separated by a line containing two dashes. For example, the
file picture.jpg may be broken into three parts all stored on the same machine:

http://mymachine.mit.edu/picture.jpg-part1

http://mymachine.mit.edu/picture.jpg-part2

http://mymachine.mit.edu/picture.jpg-part3

To download this stream, your program would download each part in succession, thus
recreating the original file.

The manifest stream can give alternatives, so that a part, or several parts, can be stored
redundantly in different locations:

http://mymachine.mit.edu/picture.jpg-part1

http://yourmachine.mit.edu/picture.jpg-part1

http://mymachine.mit.edu/picture.jpg-part2

http://yourmachine.mit.edu/picture.jpg-part2

http://mymachine.mit.edu/picture.jpg-part3

http://yourmachine.mit.edu/picture.jpg-part3

In this case, the three parts are all stored on the machine mymachine.mit.edu and also on

the machine yourmachine.mit.edu; for each part, if the first machine is not accessible, your

http://en.wikipedia.org/wiki/Internet_media_type

--

--

--

--

--

--

Project 1: Multipart Data Transfer

downloader should try the second.

Manifest streams can also be recursive. For example, the manifest stream http://mymachine.

mit.edu/endless.txt.parts might look like:

http://mymachine.mit.edu/verse.txt

http://yourmachine.mit.edu/verse.txt

http://hermachine.mit.edu/verse.txt

http://yourmachine.mit.edu/chorus.txt

http://mymachine.mit.edu/endless.txt.parts

Thus the last part of this manifest stream refers back to itself, so a client reading from your
Multipart implementation would receive an endless stream alternating between the contents

of verse.txt and the contents of chorus.txt.

Note also that in the preceding manifest stream there are three alternatives for verse.txt

but only one for chorus.txt and endless.txt.parts. Like in BitTorrent, certain parts may

only be hosted by certain servers. Then again, it should never hurt if a nonexistent or
perhaps even malformed URL is listed as an additional alternative source, since your code
should be able to handle this and try a different alternative.

Finally, keep in mind that we are assuming all URLs point to potentially unbounded streams,
not necessarily finite-length files. Thus another way to produce the endless series of verses
and choruses would be an endless manifest stream (generated by a program running at the
URL, for example):

http://mymachine.mit.edu/verse.txt

http://yourmachine.mit.edu/chorus.txt

http://mymachine.mit.edu/verse.txt

http://yourmachine.mit.edu/chorus.txt

[...]

and so on...

Application Behavior

Project 1: Multipart Data Transfer

The GUI offers
a text field
and an
adjacent
button marked
Start. The
user enters a
URL in the
text field
pointing to a
manifest
stream (which
may be local
or on another
machine) and
clicks on the button. The application then downloads the stream part-by-part. If the stream
results in a single finite file, the file is downloaded in its entirety and then displayed in the
window. The GUI also supports (potentially endless) file-sequence streams, described below.
Each file in these sequences is downloaded and displayed in succession, creating, for
example, an image animation or textual progression. The Step button downloads and displays
the next file in a sequence stream, and the Animate slider controls automatic stepping, for
example to watch an animated sequence of image files.

API

The GUI component of the application is provided for you. Your task is to implement the
method Multipart.openStream(), satisfying the specification in the javadocs for the

Multipart class. You may want to create other classes as well to help with this task, but the

sole entry point where the GUI will call your code is Multipart.openStream().

Handling faults

A variety of failures may occur during execution, which your code should deal with gracefully.
These include network failures (e.g. the program cannot download a file), manifest file syntax
errors, and other failure scenarios.

Tasks
You should perform the following tasks:

http://mit.edu/6.005/www/fa08/projects/multipart/api/multipart/Multipart.html
http://mit.edu/6.005/www/fa08/projects/multipart/api/multipart/Multipart.html

Project 1: Multipart Data Transfer

●	 Laboratory. Complete the first lab of this project. A separate handout describes the
lab activities.

●	 Problem Refinement. Analyze the problem statement carefully, and resolve any
ambiguities or omissions. In particular, you should specify the structure of the manifest
file using a grammar, clarify any assumptions that are necessary, and should specify
what failures will be handled and how. In most cases, there will be no obvious best way
to refine the problem, so you should use your own judgment and justify your decisions
carefully (but briefly!). Your work should include a refined specification for the
Multipart class itself.

●	 Abstract Design. Design a multipart downloader by describing a state machine (with
a grammar or a state machine diagram) that describes the behavior of the downloader
itself. You will probably find it easiest to start with the assumption that there are no
failures, so that you can identify the major modes and the transitions between them,
and then to consider the various failures that can occur. You may end up designing two
state machines, such as a parser and a downloader.

●	 Code Design. Sketch the code structure using dependency diagrams for two possible
implementations of your abstract design that differ substantively. List their relative
merits, select one of them, and explain why you chose it. You should consider, in
particular, whether your design is testable; it should be easy, for example, to simulate
failures so that you can test your code against them.

●	 Design Meeting. Your TA will arrange to meet with your group during lab time (11am
2pm) on Friday, October 3, the day after your first deliverables are due.

●	 Implementation. Implement your chosen code design in Java. You might find that
you want to make changes to your design. You are free to do this, but should record
the changes so it is clear what the original design was and what changes you made to
it.

●	 As you write the code, you should include a succinct specification of each method as a
javadoc comment, and additionally a comment at the top of each class explaining its
role.

●	 Test. Run the staff test suite using the test framework provided. If your program fails
any of the tests, correct the problem, and rerun the test suite. Create at least three
additional test cases of your own, that demonstrate the robustness of your Multipart

implementation.
●	 Reflection. Write a brief commentary saying what you learned from this experience.

What was easy? What was hard? What was unexpected? Briefly evaluate your solution,
pointing out its key merits and deficiencies.

Infrastructure

We provide some example manifest streams. In approximate order of complexity, these are:

Project 1: Multipart Data Transfer

● http://mit.edu/6.005/www/fa08/project1/cheerup.jpg.parts

● http://mit.edu/6.005/www/fa08/project1/yellowsub.txt-seq.parts

● http://mit.edu/6.005/www/fa08/project1/icarus.jpg.parts

● http://mit.edu/6.005/www/fa08/project1/empty.txt.parts

● http://mit.edu/6.005/www/fa08/project1/bettyboop.png-seq.parts

● http://mit.edu/6.005/www/fa08/project1/hair.jpg.parts

● http://scripts.mit.edu/~6.005/project1/fly.txt-seq.parts.cgi

(Note that if you want to look at the contents of these manifests in a browser, you may have
to save the files and then open them in a text editor. In particular, Firefox will sometimes just
display the URL of the file, as though it were the contents of the file.)

For comparison, some of the original single-part files are in the same directory.

Deliverables and Grading

For the first deadline, your deliverables are:

● the problem refinement;
● the abstract design;
● and the code design;

and for the second deadline:

● the implementation;
● the tests;
● and your reflections.

Your code should be committed in the repository you share with your teammates by the
deadline. All other parts of the project should be stored in your repository as two separate
PDF documents, one for each deadline.

Grades will be allotted according to the following breakdown: problem refinement -- 20%;
abstract design -- 20%; code design -- 20%; implementation -- 20%; testing -- 10%;
reflection -- 10%.

Hints

http://mit.edu/6.005/www/fa08/project1/cheerup.jpg.parts
http://mit.edu/6.005/www/fa08/project1/yellowsub.txt-seq.parts
http://mit.edu/6.005/www/fa08/project1/icarus.jpg.parts
http://mit.edu/6.005/www/fa08/project1/empty.txt.parts
http://mit.edu/6.005/www/fa08/project1/bettyboop.png-seq.parts
http://mit.edu/6.005/www/fa08/project1/hair.jpg.parts
http://scripts.mit.edu/~6.005/project1/fly.txt-seq.parts.cgi
http://mit.edu/6.005/www/fa08/project1/

Project 1: Multipart Data Transfer

Understanding the protocol. Look at the contents of the manifest files we provide, using a
web browser. (You may have to save the files and then open them in a text editor. In
particular, Firefox will sometimes just display the URL of the file, as though it were the
contents of the file.) The structure is quite simple, and examining the manifest files and the
parts of text files (which, unlike image files, have well-formed subparts) will give you an
intuition for what your program should be doing.

Extending InputStream. Your code design may call for creating a subclass of java.io.

InputStream. You should understand, by reading the InputStream javadoc, why you only

need to override read() to have a legitimate subclass of InputStream. Consider what you

would need to do differently if the implementation details of InputStream weren't so clearly

documented. Also consider whether you want to override the close() method.

Using local file URLs. You can use URLs starting with file:// to access local files. This

could be useful for both debugging and testing.

Manifests (.parts files) are different from sequences (-seq files). Your job in this
project is to download, parse, and interpret manifests. The sequence file format is
implemented by FileSequenceReader, which you will unit-test in the lab. You can think of the
sequence format as a primitive movie format that we've invented (analogous to .mov or .avi).
Manifests may include -seq files, but your code shouldn't treat them any differently from
other file formats, like .txt or .jpg. In particular, Multipart.openStream() should not convert a
manifest into a sequence stream (i.e., it should not precede each part with its length as a 4
byte integer). Multipart.openStream() should return a stream that simply concatenates all the
parts together.

http://java.sun.com/j2se/1.5.0/docs/api/java/io/InputStream.html
http:java.io

