
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Optional Lab: Graphical User Interfaces in Swing 

Optional Lab: Graphical User Interfaces in Swing 
6.005 Elements of Software Construction 
Fall 2008 
No due date 

In this lab, you will become familiar with GUI programming and the Java Swing user interface 
toolkit. You will learn about: 

●	 Swing widgets, including windows, labels, text fields, lists, scroll panes, menu bars, 
and buttons; 

●	 using a layout manager to automatically arrange widgets in a window; 
●	 using action listeners to respond to user input; 
●	 and using a standard dialog provided by Swing. 

Swing, and graphical user interface programming in general, is filled with complex APIs and 
complicated control flow mechanisms. This lab should give you the basic tools you need to 
complete your GUI in Project 3. 

Note: this lab is not required, but you may find it useful. 

Before Lab


Before starting this lab, please do the following: 

●	 Read both Project 3 and this lab handout. 
●	 Check out the guiwords project from your personal SVN repository. 

●	 If you are new to GUI or Swing programming, familiarize yourself with The Swing 
Tutorial. Don't try to read the entire tutorial, but do have an idea of what you can find 
there. Here are some of the most useful sections: 

�❍ Using Swing Components, which includes a visual index of available components 
and lots of how-tos, is the most immediately useful. In this lab, you will already 
be using a top-level container, buttons, text fields, labels, lists and models, 
scroll panes, menus, dialogs, and others. 

�❍ Writing Event Listeners discusses just that. 
�❍ Concurrency in Swing covers some important details of multithreaded GUI 

programming. 

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/components/index.html
http://java.sun.com/docs/books/tutorial/ui/features/components.html
http://java.sun.com/docs/books/tutorial/uiswing/components/toplevel.html
http://java.sun.com/docs/books/tutorial/uiswing/components/button.html
http://java.sun.com/docs/books/tutorial/uiswing/components/textfield.html
http://java.sun.com/docs/books/tutorial/uiswing/components/label.html
http://java.sun.com/docs/books/tutorial/uiswing/components/list.html
http://java.sun.com/docs/books/tutorial/uiswing/components/model.html
http://java.sun.com/docs/books/tutorial/uiswing/components/scrollpane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html
http://java.sun.com/docs/books/tutorial/uiswing/components/dialog.html
http://java.sun.com/docs/books/tutorial/uiswing/events/index.html
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/initial.html


Optional Lab: Graphical User Interfaces in Swing 

●	 Read through the tutorial on TableLayout. 

Word Finder 

Word Finder will be a simple application that presents a basic but functional interface for 
searching a list of words. 

The skeleton of this application is provided for you as follows: 

●	 words: a dictionary of about 45,400 words taken from the standard Linux /usr/share/ 

dict/words. 

●	 WordList: a backend class that represents a list of words and provides operations for 

loading the list from a stream and searching the list. 
●	 WordFinder: a skeleton for the user interface you will implement in this lab. 

Getting Started 

Begin by running the main methods in WordList — it should output a list of words containing 

"ph" — and WordFinder, which should display a very preliminary UI. 

Task 1: Add an ActionListener to the find JTextField so that pressing "enter" uses words to 

search for the current text in the field and display the results on the console (i.e., System. 

out). 

https://tablelayout.dev.java.net/articles/TableLayoutTutorialPart1/TableLayoutTutorialPart1.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html#addActionListener(java.awt.event.ActionListener)
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/JTextComponent.html#getText()


Optional Lab: Graphical User Interfaces in Swing 

Layout, Lists, and Labels 

A LayoutManger determines how components within a container like JFrame are arranged. 
The default LayoutManger for JFrames, BorderLayout, is simple but not very powerful. Java 

provides several other layout managers, some of which are notoriously complicated. 

TableLayout is the alternative we will use for this lab, and which you are encouraged to use 
for the project. Read the documentation and this tutorial. 

TableLayout arranges the user interface in a logical table of cells. A 2D array of doubles is 
used to specify the percentage or absolute width and height of the columns and rows of the 
table. 

We would like to lay out the final interface of the Word Finder application like this: 

In this diagram, PREFERRED indicates that the width or height of the column or row is 
determined by the "preferred" size of the components in it, and FILL indicates that the 
column or row expands to take up any remaining space when the window is shown or its size 
is changed by the user. 

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/LayoutManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Container.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFrame.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/BorderLayout.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/GridBagLayout.html
https://tablelayout.dev.java.net/
https://tablelayout.dev.java.net/articles/TableLayoutTutorialPart1/TableLayoutTutorialPart1.html


Optional Lab: Graphical User Interfaces in Swing 

Task 2: Set the JFrame's layout manager to an appropriately-initialized TableLayout. Update 

the add(...) component calls to replace the BorderLayout information with the "column, 

row" String used by TableLayout. 

A JList is the appropriate component to display the list of matched words. A JList separates 

the presentation of those words from the list itself by having a separate ListModel. For this 
lab, you can safely use a DefaultListModel, and add or remove items from this model as 
needed. 

Task 3: Add to the window a JList contained inside a JScrollPane. Modify your code so that 

instead of outputting the matched words to the console, they appear in the scrollable list. 

JScrollPane provides scrolling behavior for components that are too large to display in their 

entirety and is one example of how the view hierarchy (JList inside JScrollPane inside 

JFrame) is used to control component display. 

Task 4: In addition to the list of results, it is also useful to know the number of matched 
words. Add a JLabel to your interface that is updated after every search to display the 
number of matches. 

Click Me! 

It is essential to organize your implementation so that actions are separated from the 
particular GUI components that trigger them. 

Task 5: Add a "Search" button to the interface so that in addition to pressing "enter," the 
user can click "search" to update the list of matched words. If necessary, refactor your 
implementation so that code is not duplicated. At the same time, you should also ensure that 
when the interface is first displayed, it is identical to what appears when the user searches for 
the empty string. 

Finally, no interface would be complete without a good old fashioned menu bar. And no user 
interface toolkit would be complete without providing standard dialogs for actions that ought 
to be consistent across applications, such as choosing a file from the disk. We'll put both of 
those features to use. 

Task 6: Give your interface a JMenuBar with a "File" JMenu. On this menu, have at least two 
options: 

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JList.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/ListModel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/DefaultListModel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JScrollPane.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JLabel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JMenuBar.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JMenu.html


Optional Lab: Graphical User Interfaces in Swing 

●	 Open..., which should use a JFileChooser to show an "Open File" dialog in which the 
user can choose a new word list. Note that WordList already provides a load(...) 

method once you have obtained an InputStream for the chosen file. 

●	 Exit, which should... exit the application, for example by using System.exit(...). 

The Javadoc documentation for JFileChooser includes an example that should make this 

task straightforward. JOptionPane is another important source for standard dialog boxes. 

Finishing Touch 

Task 7: You choose... 

To finish off this simple Word Finder interface, implement one more feature of your choosing, 
as time in the lab permits. This can be anything you like; here are some suggestions: 

●	 Add a "Clear" button that clears the text field and resets the current search. 
●	 Add a check box to enable or disable case-sensitivity in the search. 
●	 Use a different listener on the text field so that searches happen incrementally as you 

type, and pressing "enter" or clicking "search" is unnecessary. 
●	 Change the list display so that the part of each word that matches the user's search 

term is highlighted. (Hint: Swing supports basic HTML, which you may find helpful.) 
●	 Improve the performance of Word Finder and eliminate the word list loading delay by 

implementing a custom list model. 

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFileChooser.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#exit(int)
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JOptionPane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/html.html

