
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

10/15/2008

1

Debugging

Rob Miller
Fall 2008

© Robert Miller 2008

Today’s Topics
how to avoid debugging

assertions
code reviews

how to do it when you have to
reducing test cases
hypothesis-driven debugging
binary search

very hard bugsvery hard bugs
Heisenbugs

© Robert Miller 2008

Defensive Programming
first defense against bugs is to make them impossible

Java makes buffer overflow bugs impossible

second defense against bugs is to not make them
 hi i h fi icorrectness: get things right first time

third defense is to make bugs easy to find
local visibility of errors: if things fail, we'd rather they fail loudly and
immediately – e.g. with assertions

fourth defense is extensive testing
uncover as many bugs as possible

l i d b ilast resort is debugging
needed when effect of bug is distant from cause

© Robert Miller 2008

First Defense: Impossible By Design
in the language

automatic array bounds checking make buffer overflow bugs impossible
static typing eliminates many runtime type errors

in the protocols/libraries/modulesin the protocols/libraries/modules
TCP/IP guarantees that data is not reordered
BigInteger guarantees that there will be no overflow

in self-imposed conventions
immutable objects can be passed around and shared without fear
caution: you have to keep the discipline

t th l t h l h ibl ith i t d • get the language to help you as much as possible , e.g. with private and
final

© Robert Miller 2008

10/15/2008

2

Second Defense: Correctness
get things right the first time

don’t code before you think! Think before you code.
• do your thinking in design; use a pattern to map that design to code

especially true when debugging is going to be hardespecially true when debugging is going to be hard
concurrency

simplicity is key
modularity
• divide program into chunks that are easy to understand
• use abstract data types with well-defined interfaces

id • avoid rep exposure
specification
• write specs for all modules, so that an explicit, well-defined contract

exists between each module and its client

© Robert Miller 2008

Third Defense: Immediate Visibility
if we can't prevent bugs, we can try to localize them to
a small part of the program

fail fast: the earlier a problem is observed, the easier it is to fix
assertions: catch bugs early before failure has a chance to contaminate (and assertions: catch bugs early, before failure has a chance to contaminate (and
be obscured by) further computation
• in Java: assert boolean-expression
• note that you must enable assertions with -ea

unit testing: when you test a module in isolation, you can be confident that
any bug you find is in that unit (or in the test driver)
regression testing: run tests as often as possible when changing code.
• if a test fails, the bug is probably in the code you just changed

when localized to a single method or small module,
bugs can be found simply by studying the program text

© Robert Miller 2008

Example: Assertions
/*
* Returns n!, the number of permutations of n objects.
* n must be nonnegative.
*/
public static int fact(int n) { where wouldpublic static int fact(int n) {

if (n == 0) return 1;
else return n * fact(n-1);

}

/*
* Returns (n choose k), the number of distinct subsets
* of size k in a set of size n.
* Requires 0 <= k <= n

where would
assertions be
usefully added
to this code?

* Requires 0 <= k <= n.
*/
public static int combinations(int n, int k) {

return fact(n) / (fact(k) * fact(n-k));
}

© Robert Miller 2008

Code Review
other eyes looking at the code can find bugs

code review
f l i d f d b h (i i l h)careful, systematic study of source code by others (not original author)

analogous to proofreading an English paper
look for bugs, poor style, design problems, etc.
formal inspection: several people read code separately, then meet to
discuss it
lightweight methods: over-the-shoulder walkthrough, or by email
many dev groups require a code review before commity g p q

code review complements other techniques
code reviews can find many bugs cheaply
also test the understandability and maintainability of the code
three proven techniques for reducing bugs: reasoning, code reviews,
testing

© Robert Miller 2008

10/15/2008

3

Let’s Review Some Code
public class PigLatin {

static String[] words;

public static String toPigLatin(String s) {
words = s.split(" ");

String result = "";
for (int i = 0; i <= words.length; ++i) {

piggify(i);
result += words[i];

}
return result;

}

public static void piggify(int i) {
if (words[i].startsWith("a") || words[i].startsWith("e") || ...) {

words[i] += "yay";
} else {

words[i] = words[i].substring(1);
words[i] += words[i].charAt(0) + "ay";

}
}

}
© Robert Miller 2008

How to Debug
1) reproduce the bug with a small test case

find a small, repeatable test case that produces the failure (may take effort,
but helps clarify the bug, and also gives you something for regression)
don't move on to next step until you have a repeatable testdon t move on to next step until you have a repeatable test

2) find the cause
narrow down location and proximate cause
study the data / hypothesize / experiment / repeat
may change code to get more information
don't move on to next step until you understand the cause

3) fix the bug3) fix the bug
is it a simple typo, or is it a design flaw? does it occur elsewhere?

4) add test case to regression tests
then run regression tests to ensure that the bug appears to be fixed, and
no new bugs have been introduced by the fix

© Robert Miller 2008

Reducing to a Simple Test Case
find simplest input that will provoke bug

usually not the input that originally revealed existence of the bug
start with data that revealed bug
keep paring it down (binary search can help)keep paring it down (binary search can help)
often leads directly to an understanding of the cause

same idea is useful at many levels of a system
method arguments
input files
keystrokes and mouse clicks in a GUI

© Robert Miller 2008

Example
/**
* Returns true if and only if s contains t as a substring,
* e.g. contains("hello world", "world") == true.
*/
public static boolean contains(String s, String t) { ... }public static boolean contains(String s, String t) { ... }

a user discovers that
contains("Life is wonderful! I am so very very happy all the time“,

"very happy")
incorrectly returns false

wrong approach: g pp
try to trace the execution of contains() for this test case

right approach:
first try to reduce the size of the test case
even better: bracket the bug with a test case that fails and similar test cases
that succeed

© Robert Miller 2008

10/15/2008

4

Code for contains()
/**
* Returns true if and only if s contains t as a substring,
* e.g. contains("hello world", "world") == true.
*/
public static boolean contains(String s, String t) {public static boolean contains(String s, String t) {

search:
for (int i = 0; i < s.length(); ++i) {

for (int j = 0; j < t.length(); ++j, ++i) {
if (s.charAt(i) != t.charAt(j)) continue search;

}
return true;

}
return false;return false;

}

© Robert Miller 2008

Finding the Cause
exploit modularity

start with everything, take away pieces until bug goes
start with nothing, add pieces back in until bug appears

take advantage of modular reasoningtake advantage of modular reasoning
trace through program, viewing intermediate results
insert assertions targeted at the bug
design all data structures to be printable (i.e., implement toString())
println is a surprisingly useful and universal tool
• in large systems, use a logging infrastructure instead of println

use binary search to speed things upuse binary search to speed things up
bug happens somewhere between first and last statement
so do binary search on the ordered set of statements

© Robert Miller 2008

Example: Finding a Sudoku Bug
suppose a Sudoku solver produces the wrong answer

Sudoku
solver

3....
......

7....
......

solver
......

parse
input

make SAT
formula

SAT
solver

interpret
assignment

print
output

© Robert Miller 2008

Note that this isn’t a state machine diagram or a module dependence diagram; it
shows data flow, which is often useful for thinking about bugs.

Regression Testing
whenever you find and fix a bug

store the input that elicited the bug
store the correct output
add it to your test suiteadd it to your test suite

why regression tests help
helps to populate test suite with good test cases
• remember that a test is good if it elicits a bug – and every regression

test did in one version of your code
protects against reversions that reintroduce bug
the bug may be an easy error to make (since it happened once already)g y y (pp y)

test-first debugging
when a bug arises, immediately write a test case for it that elicits it
once you find and fix the bug, the test case will pass, and you’ll be done

© Robert Miller 2008

10/15/2008

5

The Ugliest Bugs
we’ve had it easy so far

sequential, deterministic programs have repeatable bugs

but the real world is not that nice…
i i d d itiming dependencies

unpredictable network delays
varying processor loads
concurrency

heisenbugs
nondeterministic, hard to reproduce

 di h t t l k t it ith i tl d b !may even disappear when you try to look at it with println or debugger!

one approach
build a lightweight event log (circular buffer)
log events during execution of program as it runs at speed
when you detect the error, stop program and examine logs

© Robert Miller 2008

Example of a heisenbug
public class Bank {

int balance;

public Bank(int balance) {
this.balance = balance;this.balance balance;

}

public void deposit(int amount) {
balance += amount;

}

public void withdraw(int amount) {
balance = amount;balance -= amount;

}

public int getBalance() {
return balance;

}
}

© Robert Miller 2008

Example of a heisenbug
// our bank account starts with $100
final Bank account = new Bank(100);
// start a bunch of threads
List<Thread> threads = new ArrayList<Thread>();
for (int i = 0; i < 10; ++i) {for (int i 0; i < 10; ++i) {

Thread t = new Thread(new Runnable() {
public void run() {

// each thread does a bunch of bank transactions
for (int i = 0; i < 10000; ++i) {

account.deposit(1); // put a dollar in
account.withdraw(1); // take it back out

}}});
t start(); // don't forget to start the thread!t.start(); // don't forget to start the thread!
threads.add(t); }

// wait for all the threads to finish
for (Thread t: threads) t.join();
// display the final account balance
System.out.println(account.getBalance());

© Robert Miller 2008

Summary
avoid debugging

it’s not fun and not productive
many of the techniques of this class are designed to save you from bugs

approach it systematicallyapproach it systematically
simplify test cases
find cause before trying to fix

© Robert Miller 2008

