
Lecture 2	 6.006 Fall 2011  

Lecture 2: Models of Computation  

Lecture Overview 

•	 What is an algorithm? What is time? 

•	 Random access machine 

•	 Pointer machine 

•	 Python model 

•	 Document distance: problem & algorithms 

History 

Al-Khwārizmı̄ “al-kha-raz-mi” (c. 780-850) 

•	 “father of algebra” with his book “The Compendious Book on Calculation by Com

pletion & Balancing” 

•	 linear & quadratic equation solving: some of the first algorithms 

What is an Algorithm? 

•	 Mathematical abstraction of computer program 

•	 Computational procedure to solve a problem 

programming 
language

pseudocode

computer model of 
computation

program algorithm

analog

built on 
top of

Figure 1: Algorithm 

Model of computation specifies 

•	 what operations an algorithm is allowed 

•	 cost (time, space, . . . ) of each operation 

• cost of algorithm = sum of operation costs 

1  

http://en.wikipedia.org/wiki/Al-Khwarizmi


Lecture 2 6.006 Fall 2011  

Random Access Machine (RAM)  

0

1

2

.

.

.

3

4

5
.
.
.

word
}

• Random Access Memory (RAM) modeled by a big array 

• Θ(1) registers (each 1 word) 

• In Θ(1) time, can 

– load word @ ri into register rj 
– compute (+, −, ∗, /, &, |, ̂ ) on registers 

– store register rj into memory @ ri 

• What’s a word? w ≥ lg (memory size) bits 

– assume basic objects (e.g., int) fit in word 

– unit 4 in the course deals with big numbers 

• realistic and powerful → implement abstractions 

Pointer Machine 

• dynamically allocated objects (namedtuple)  

• object has O(1) fields  

• field = word (e.g., int) or pointer to object/null (a.k.a. reference) 

• weaker than (can be implemented on) RAM 

2  



Lecture 2 6.006 Fall 2011  

val 5
prev null
next

val -1
prev

nullnext

Python Model 

Python lets you use either mode of thinking 

1. “list” is actually an array → RAM  

L[i] = L[j] + 5 → Θ(1) time  

2. object with O(1) attributes (including references) → pointer machine  

x = x.next → Θ(1) time  

Python has many other operations. To determine their cost, imagine implementation in 
terms of (1) or (2): 

1. list 

(a) L.append(x) → θ(1) time 

obvious if you think of infinite array  

but how would you have > 1 on RAM?  
via table doubling [Lecture 9] ⎫  

(b)  ≡ L = [ ] → θ(1) "'L = L1 + L2v ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬  
(θ(1+|L1|+|L2|) time)   

for x in L1: θ(|L1|) 
L.append(x) → θ(1)   

for x in L2: θ(|L2|) 
L.append(x) → θ(1) 

3 

⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎪⎭  



 
 

 

Lecture 2 6.006 Fall 2011  

(c) L1.extend(L2) ≡ for x in L2: 
≡ L1+ = L2 L1.append(x) → θ(1) 

θ(1 + |L2|) time 

(d) L2 = L1[i : j] ≡ L2 = [] 
for k in range(i, j): 

θ(j − i + 1) = O(|L|) 

L2.append(L1[i]) → θ(1) 

(e) b = x in L ≡  for y in L:  
& L.index(x) if x == y:  
& L.find(x) b = T rue; 

break 
else 
b = F alse 

⎫ ⎪⎬ ⎪⎭ 

θ(1)  

⎫ ⎪⎪⎪⎪⎪⎪⎪⎬  

θ(index of x)  = θ(|L|)  

⎪⎪⎪⎪⎪⎪⎪⎭  

(f) len(L) → θ(1) time - list stores its length in a field 

(g) L.sort() → θ(|L| log |L|) - via comparison sort [Lecture 3, 4 & 7)] 

2. tuple, str: similar, (think of as immutable lists) 

3. dict: via hashing [Unit 3 = Lectures 8-10]  
D[key] = val  

θ(1) time w.h.p.
key in D 

4. set: similar (think of as dict without vals) 

5. heapq: heappush & heappop - via heaps [Lecture 4] → θ(log(n)) time 

6. long: via Karatsuba algorithm [Lecture 11]  
x + y → O(|x| + |y|) time where |y| reflects # words  
x ∗ y → O((|x| + |y|)log(3)) ≈ O((|x| + |y|)1.58) time  

Document Distance Problem — compute d(D1, D2) 

The document distance problem has applications in finding similar documents, detecting  
duplicates (Wikipedia mirrors and Google) and plagiarism, and also in web search (D2 =  
query).  
Some Definitions:  

• Word = sequence of alphanumeric characters 

• Document = sequence of words (ignore space, punctuation, etc.) 

The idea is to define distance in terms of shared words. Think of document D as a vector: 
D[w] = # occurrences of word W . For example: 

4  

}
}

}



Lecture 2 6.006 Fall 2011  

dog

cat

D2

D1

the

Figure 2: D1 = “the cat”, D2 = “the dog” 

As a first attempt, define document distance as   
d/(D1, D2) = D1 · D2 = D1[W ] · D2[W ] 

W 

The problem is that this is not scale invariant. This means that long documents with 99%  
same words seem farther than short documents with 10% same words.  
This can be fixed by normalizing by the number of words:  

D1 · D2
d//(D1, D2) = 

|D1| · |D2| 

where |Di| is the number of words in document i. The geometric (rescaling) interpretation 
of this would be that: 

d(D1, D2) = arccos(d//(D1, D2)) 

or the document distance is the angle between the vectors. An angle of 0◦ means the two 
documents are identical whereas an angle of 90◦ means there are no common words. This 
approach was introduced by [Salton, Wong, Yang 1975]. 

Document Distance Algorithm 

1. split each document into words 

2. count word frequencies (document vectors) 

3. compute dot product (& divide) 

5  



Lecture 2	 6.006 Fall 2011  

(1) re.findall (r“ w+”, doc) → what cost?  
in general re can be exponential time 
→ for char in doc: 

⎫ ⎪⎪⎪⎪⎪⎬  
Θ(|doc|)  

if not alphanumeric  
add previous word  

⎫ ⎪⎬ Θ(1)  ⎪⎪⎪⎪⎪⎭⎪⎭ 
(if any) to list 

start new word 

(2) sort word list ⎫ ⎪⎪⎪⎪⎪⎪⎪⎬ 

← O(k log k · |word|) where k is #words 

if same as last word:	 ← O(|word|) 
increment counter 

O( 
 
| |word ) for word in list:  =  O(|doc|)  ⎫ ⎪⎪⎪⎬  

Θ(1)  
else: 

add last word and count to list 
reset counter to 0 

⎪⎪⎪⎪⎪⎪⎪⎭ 
⎪⎪⎪⎭ ⎫⎪⎬ ⎪⎭⎫  

(3) for word, count1 in doc1: ← Θ(k1) 
if word, count2 in doc2: ← Θ(k2) 

total += count1 * count2 Θ(1) 

O(k1 · k2) 

  
(3)’ start at first word of each list  

if words equal: ← O(|word|) 
total += count1 * count2 

if word1 ≤ word2: ← O(|word|) 
advance list1 

else: 
advance list2 

repeat either until list done 

Dictionary Approach 

(2)’ count = {}

for word in doc: 

O( |word|) = O(|doc|) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭  

⎫ ⎪⎪⎪⎪⎪⎪⎪⎬ if word in count:  ← Θ(|word|) + Θ(1) w.h.p 

Θ(1) 

⎫ ⎪⎬ 
O(|doc|) w.h.p. ⎪⎪⎪⎪⎪⎪⎪⎭  

count[word] += 1 
else ⎪⎭ count[word] = 1 

(3)’ as above → O(|doc1|) w.h.p. 

6 



Lecture 2	 6.006 Fall 2011  

Code (lecture2 code.zip & data.zip on website) 

t2.bobsey.txt 268,778 chars/49,785 words/3354 uniq 
t3.lewis.txt 1,031,470 chars/182,355 words/8534 uniq 
seconds on Pentium 4, 2.8 GHz, C-Python 2.62, Linux 2.6.26 

•	 docdist1: 228.1 — (1), (2), (3) (with extra sorting) 
words = words + words on line 

• docdist2: 164.7 — words += words on line 

• docdist3: 123.1 — (3)’ . . . with insertion sort 

• docdist4: 71.7 — (2)’ but still sort to use (3)’ 

• docdist5: 18.3 — split words via string.translate 

• docdist6: 11.5 — merge sort (vs. insertion) 

• docdist7: 1.8 — (3) (full dictionary) 

• docdist8: 0.2 — whole doc, not line by line 

7  



 
 

 
 
 

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



