
Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

Lecture 10: Hashing III: Open Addressing

Lecture Overview

• Open Addressing, Probing Strategies

• Uniform Hashing, Analysis

• Cryptographic Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions:

no chaining; instead all items stored in table (see Fig. 1)•

item2

item1

item3

Figure 1: Open Addressing Table

• one item per slot =⇒ m ≥ n

• hash function specifies order of slots to probe (try) for a key (for insert/search/delete),

not just one slot; in math. notation:

We want to design a function h, with the property that for all k :∈ U

h : U × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1}

universe of keys trial count slot in table

〈h(k, 0), h(k, 1), . . . , h(k,m− 1)〉

1

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

is a permutation of 0, 1, . . . ,m− 1. i.e. if I keep trying h(k, i) for increasing i,

I will eventually hit all slots of the table.

Ø
1

m-1

Figure 2: Order of Probes

Insert(k,v) : Keep probing until an empty slot is found. Insert item into that slot.

for i in xrange(m):

if T [h(k, i)] is None:] empty slot

T [h(k, i)] = (k, v)] store item

return

raise ‘full’

Example: Insert k = 496

Search(k): As long as the slots you encounter by probing are occupied by keys = k,

keep probing until you either encounter k or find an empty slot—return success or

failure respectively.

for i in xrange(m):

if T [h(k, i)] is None:] empty slot?

return None] end of “chain”

elif T [h(k, i)][∅] == k:] matching key

return T [h(k, i)]] return item

return None ˙] exhausted table

6

2

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

586	

133	

204	

496	

481	

collision

collision
free spot!

Ø
1

m-1

2
3
4
5
6

7
collision

Figure 3: Insert Example

Deleting Items?

• can’t just find item and remove it from its slot (i.e. set T [h(k, i)] = None)

• example: delete(586) =⇒ search(496) fails

• replace item with special flag: “DeleteMe”, which Insert treats as None but

Search doesn’t

Probing Strategies

Linear Probing

h(k, i) = (h′(k) +i) mod m where h′(k) is ordinary hash function

• like street parking

• problem? clustering—cluster: consecutive group of occupied slots

as clusters become longer, it gets more likely to grow further (see Fig. 4)

• can be shown that for 0.01 < α < 0.99 say, clusters of size Θ(log n).

Double Hashing

h(k, i) =(h1(k) +i·h2(k)) mod m where h1(k) and h2(k) are two ordinary hash func-

tions.

3

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

Ø
1

m-1

cluster

if h(k,0) is any of
these, the
cluster will get
bigger

Figure 4: Primary Clustering

• actually hit all slots (permutation) if h2(k) is relatively prime to m for all k

why?

h1(k) + i · h2(k) mod m = h1(k) + j · h2(k) mod m⇒ m divides (i− j)

• e.g. m = 2r, make h2(k) always odd

Uniform Hashing Assumption (cf. Simple Uniform Hashing

Assumption)

Each key is equally likely to have any one of the m! permutations as its probe sequence

• not really true

• but double hashing can come close

Analysis

Suppose we have used open addressing to insert n items into table of size m. Under
1

the uniform hashing assumption the next operation has expected cost of ≤ ,
1

= n/m(< 1).
− α

where α

Example: α = 90% =⇒ 10 expected probes

4

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

Proof:

Suppose we want to insert an item with key k. Suppose that the item is not in the

table.

• probability first probe successful: m−n =: p
m

(n bad slots, m total slots, and first probe is uniformly random)

• if first probe fails, probability second probe successful: m−n
m−1 ≥ m−n = p

m

(one bad slot already found, m− n good slots remain and the second probe is

uniformly random over the m− 1 total slots left)

• if 1st & 2nd probe fail, probability 3rd probe successful: m−n
m−2 ≥ m−n = p

m

(since two bad slots already found, m−n good slots remain and the third probe

is uniformly random over the m− 2 total slots left)

• ...

⇒ Every trial, success with probability at least p.

Expected Number of trials for success?

1 1
= .

p 1− α

With a little thought it follows that search, delete take time O(1/(1 − α)). Ditto if

we attempt to insert an item that is already there.�

Open Addressing vs. Chaining

Open Addressing: better cache performance (better memory usage, no pointers

needed)

Chaining: less sensitive to hash functions (OA requires extra care to avoid clustering)

and the load factor α (OA degrades past 70% or so and in any event cannot

support values larger than 1)

Cryptographic Hashing

A cryptographic hash function is a deterministic procedure that takes an arbitrary

block of data and returns a fixed-size bit string, the (cryptographic) hash value, such

that an accidental or intentional change to the data will change the hash value. The

data to be encoded is often called the message, and the hash value is sometimes called

the message digest or simply digest.

5

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

The ideal cryptographic hash function has the properties listed below. d is the

number of bits in the output of the hash function. You can think of m as being 2d. d

is typically 160 or more. These hash functions can be used to index hash tables, but

they are typically used in computer security applications.

Desirable Properties

1. One-Way (OW): Infeasible, given y ∈ {0, 1}dR to find any x s.t. h(x) = y.

This means that if you choose a random d-bit vector, it is hard to find an

input to the hash that produces that vector. This involves “inverting” the hash

function.

2. Collision-resistance (CR): Infeasible to find x, x′, s.t. x = x′ and h(x) =

h(x′). This is a collision, two input values have the same hash.

3. Target collision-resistance (TCR): Infeasible given x to find x′ = x s.t.

h(x) = h(x′).

TCR is weaker than CR. If a hash function satisfies CR, it automatically satisfies

TCR. There is no implication relationship between OW and CR/TCR.

Applications

1. Password storage: Store h(PW), not PW on computer. When user inputs

PW ′, compute h(PW ′) and compare against h(PW). The property required of

the hash function is OW. The adversary does not know PW or PW ′ so TCR

or CR is not really required. Of course, if many, many passwords have the

same hash, it is a problem, but a small number of collisions doesn’t really affect

security.

2. File modification detector: For each file F , store h(F) securely. Check if F

is modified by recomputing h(F). The property that is required is TCR, since

the adversary wins if he/she is able to modify F without changing h(F).

3. Digital signatures: In public-key cryptography, Alice has a public key PKA

and a private key SKA. Alice can sign a message M using her private key

to produce σ = sign(SKA,M). Anyone who knows Alice’s public key PKA

and verify Alice’s signature by checking that verify(M,σ, PKA) is true. The

adversary wants to forge a signature that verifies. For large M it is easier to

sign h(M) rather than M , i.e., σ = sign(SKA, h(M)). The property that we

6

6

Lecture 10 Hashing III: Open Addressing 6.006 Fall 2011

require is CR. We don’t want an adversary to ask Alice to sign x and then claim

that she signed x′, where h(x) = h(x′).

Implementations

There have been many proposals for hash functions which are OW, CR and TCR.

Some of these have been broken. MD-5, for example, has been shown to not be CR.

There is a competition underway to determine SHA-3, which would be a Secure Hash

Algorithm certified by NIST. Cryptographic hash functions are significantly more

complex than those used in hash tables. You can think of a cryptographic hash as

running a regular hash function many, many times with pseudo-random permutations

interspersed.

7

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

