Lecture 23: Computational Complexity

Lecture Overview

- P, EXP, R
- Most problems are uncomputable
- NP
- Hardness & completeness
- Reductions

Definitions:

- $\underline{\mathbf{P}} = \{ \text{problems solvable in polynomial } (n^c) \text{ time} \}$ (what this class is all about)
- <u>EXP</u> = {problems solvable in exponential (2^{n^c}) time}
- $\underline{\mathbf{R}} = \{ \text{problems solvable in finite time} \}$ "recursive" [Turing 1936; Church 1941]

Examples

- negative-weight cycle detection $\in \mathbf{P}$
- $n \times n$ Chess \in EXP but \notin P Who wins from given board configuration?
- Tetris ∈ EXP but don't know whether ∈ P Survive given pieces from given board.

Halting Problem:

Given a computer program, does it ever halt (stop)?

- uncomputable ($\notin \mathbb{R}$): no algorithm solves it (correctly in finite time on all inputs)
- decision problem: answer is YES or NO

Most Decision Problems are Uncomputable

- program \approx binary string \approx nonneg. integer $\in N$
- decision problem = a function from <u>binary strings</u> (≈ nonneg. integers) to {YES (1), NO (0)}
- ≈ infinite sequence of bits ≈ real number ∈ ℝ
 |ℕ| ≪ |ℝ|: no assignment of unique nonneg. integers to real numbers (ℝ uncountable)
- \implies not nearly enough programs for all problems
- each program solves only one problem
- \implies almost all problems cannot be solved

\mathbf{NP}

 $NP = \{Decision \text{ problems solvable in polynomial time via a "lucky" algorithm}\}$. The "lucky" algorithm can make lucky guesses, always "right" without trying all options.

- <u>nondeterministic model</u>: algorithm makes guesses & then says YES or NO
- guesses guaranteed to lead to YES outcome if possible (no otherwise)

In other words, $NP = \{ \text{decision problems with solutions that can be "<u>checked</u>" in polynomial time \}. This means that when answer = YES, can "<u>prove</u>" it & polynomial-time algorithm can check proof$

Example

 $\mathrm{Tetris} \in \mathrm{NP}$

- nondeterministic algorithm: guess each move, did I survive?
- proof of YES: list what moves to make (<u>rules</u> of Tetris are easy)

$\mathbf{P}\neq\mathbf{NP}$

Big conjecture (worth \$1,000,000)

- \approx cannot engineer luck
- \approx generating (proofs of) solutions can be harder than checking them

Hardness and Completeness

Claim:

If $P \neq NP$, then Tetris $\in NP - P$ [Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2004]

Why:

Tetris is <u>NP-hard</u> = "as hard as" every problem \in NP. In fact <u>NP-complete</u> = NP \cap NP-hard.

Similarly

Chess is <u>EXP-complete</u> = EXP \cap <u>EXP-hard</u>. EXP-hard is as hard as every problem in EXP. If NP \neq EXP, then Chess \notin EXP \setminus NP. Whether NP \neq EXP is also an open problem but less famous/"important".

Reductions

Convert your problem into a problem you already know how to solve (instead of solving from scratch)

- most common algorithm design technique
- unweighted shortest path \rightarrow weighted (set weights = 1)
- min-product path \rightarrow shortest path (take logs) [PS6-1]
- longest path \rightarrow shortest path (negate weights) [Quiz 2, P1k]
- shortest ordered tour \rightarrow shortest path (k copies of the graph) [Quiz 2, P5]
- cheapest leaky-tank path \rightarrow shortest path (graph reduction) [Quiz 2, P6]

All the above are <u>One-call reductions</u>: A problem \rightarrow B problem \rightarrow B solution \rightarrow A solution <u>Multicall reductions</u>: solve A using free calls to B — in this sense, every algorithm reduces problem \rightarrow model of computation

NP-complete problems are all interreducible using polynomial-time reductions (same difficulty). This implies that we can use reductions to prove NP-hardness — such as in 3-Partition \rightarrow Tetris

Examples of NP-Complete Problems

- Knapsack (pseudopoly, not poly)
- 3-Partition: given *n* integers, can you divide them into triples of equal sum?
- Traveling Salesman Problem: shortest path that visits all vertices of a given graph decision version: is minimum weight $\leq x$?
- longest common subsequence of k strings
- Minesweeper, Sudoku, and most puzzles
- SAT: given a Boolean formula (and, or, not), is it ever true? x and not $x \to NO$
- shortest paths amidst obstacles in 3D

- 3-coloring a given graph
- find largest clique in a given graph

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.