
Lecture 23 Computational Complexity 6.006 Fall 2011

Lecture 23: Computational Complexity

Lecture Overview

• P, EXP, R

• Most problems are uncomputable

• NP

• Hardness & completeness

• Reductions

Definitions:

• P = {problems solvable in polynomial (nc) time}
(what this class is all about)

• EXP = {problems solvable in exponential (2n
c
) time}

• R = {problems solvable in finite time} “recursive” [Turing 1936; Church 1941]

computational
di�culty} } }

R

EXP
P

uncomputable/
undecidable

P C EXP C R
= =

Examples

• negative-weight cycle detection ∈ P

• n× n Chess ∈ EXP but ∈/ P

Who wins from given board configuration?

• Tetris ∈ EXP but don’t know whether ∈ P

Survive given pieces from given board.

1

Lecture 23 Computational Complexity 6.006 Fall 2011

Halting Problem:

Given a computer program, does it ever halt (stop)?

• uncomputable (∈/ R): no algorithm solves it (correctly in finite time on all inputs)

• decision problem: answer is YES or NO

Most Decision Problems are Uncomputable

• program ≈ binary string ≈ nonneg. integer ∈ N

• decision problem = a function from binary strings (≈ nonneg. integers) to {YES (1),

NO (0)}

• ≈ infinite sequence of bits ≈ real number ∈ R
|N| � |R|: no assignment of unique nonneg. integers to real numbers (R uncountable)

• =⇒ not nearly enough programs for all problems

• each program solves only one problem

• =⇒ almost all problems cannot be solved

NP

NP = {Decision problems solvable in polynomial time via a “lucky” algorithm}. The “lucky”

algorithm can make lucky guesses, always “right” without trying all options.

• nondeterministic model: algorithm makes guesses & then says YES or NO

• guesses guaranteed to lead to YES outcome if possible (no otherwise)

In other words, NP = {decision problems with solutions that can be “checked” in polynomial

time}. This means that when answer = YES, can “prove” it & polynomial-time algorithm

can check proof

Example

Tetris ∈ NP

• nondeterministic algorithm: guess each move, did I survive?

• proof of YES: list what moves to make (rules of Tetris are easy)

2

Lecture 23 Computational Complexity 6.006 Fall 2011

computational
di�culty} } }

R

EXP

P

uncomputable/
undecidable

}

NP

P = NP

Big conjecture (worth $1,000,000)

• ≈ cannot engineer luck

• ≈ generating (proofs of) solutions can be harder than checking them

Hardness and Completeness

Claim:

If P = NP, then Tetris ∈ NP - P

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-Nowell 2004]

Why:

Tetris is NP-hard = “as hard as” every problem ∈ NP. In fact NP-complete = NP ∩ NP-

hard.

6

6

computational
di�culty} } }

R

EXP

P

uncomputable/
undecidable

}

NP

Tetris Chess

}}
EXP-hard

NP-hard
EXP-complete

NP-complete

3

Lecture 23 Computational Complexity 6.006 Fall 2011

Similarly

Chess is EXP-complete = EXP ∩ EXP-hard. EXP-hard is as hard as every problem in

EXP. If NP = EXP, then Chess ∈/ EXP \ NP. Whether NP = EXP is also an open problem

but less famous/“important”.

Reductions

Convert your problem into a problem you already know how to solve (instead of solving

from scratch)

• most common algorithm design technique

• unweighted shortest path → weighted (set weights = 1)

• min-product path → shortest path (take logs) [PS6-1]

• longest path → shortest path (negate weights) [Quiz 2, P1k]

• shortest ordered tour → shortest path (k copies of the graph) [Quiz 2, P5]

• cheapest leaky-tank path → shortest path (graph reduction) [Quiz 2, P6]

All the above are One-call reductions: A problem→ B problem→ B solution→ A solution

Multicall reductions: solve A using free calls to B — in this sense, every algorithm reduces

problem → model of computation

NP-complete problems are all interreducible using polynomial-time reductions (same dif-

ficulty). This implies that we can use reductions to prove NP-hardness — such as in

3-Partition → Tetris

Examples of NP-Complete Problems

• Knapsack (pseudopoly, not poly)

• 3-Partition: given n integers, can you divide them into triples of equal sum?

• Traveling Salesman Problem: shortest path that visits all vertices of a given graph

— decision version: is minimum weight ≤ x?

• longest common subsequence of k strings

• Minesweeper, Sudoku, and most puzzles

• SAT: given a Boolean formula (and, or, not), is it ever true? x and not x → NO

• shortest paths amidst obstacles in 3D

6 6

4

Lecture 23 Computational Complexity 6.006 Fall 2011

• 3-coloring a given graph

• find largest clique in a given graph

5

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

