
Lecture 24	 Beyond 6.006 6.006 Fall 2011

Lecture 24: Parallel Processor Architecture &

Algorithms

Processor Architecture

Computer architecture has evolved:

•	 Intel 8086 (1981): 5 MHz (used in first IBM PC)

•	 Intel 80486 (1989): 25 MHz (became i486 because of a court ruling that prohibits the
trademarking of numbers)

•	 Pentium (1993): 66 MHz

•	 Pentium 4 (2000): 1.5 GHz (deep ≈ 30-stage pipeline)

•	 Pentium D (2005): 3.2 GHz (and then the clock speed stopped increasing)

•	 Quadcore Xeon (2008): 3 GHz (increasing number of cores on chip is key to perfor
mance scaling)

Processors need data to compute on:

DRAM

SRAM

fast
slow

P P
PP

Problem: SRAM cannot support more than ≈ 4 memory requests in parallel.

 1

Lecture 24 Beyond 6.006 6.006 Fall 2011

$: cache P: processor

P
$

P
$

P
$

P
$

P
$

P
$

P
$

P
$

P
$

Most of the time program running on the processor accesses local or “cache” memory

Every once in a while, it accesses remote memory:

P
$

P
$

data
request
(addr)

data

Round-trip required to obtain data

 2

Lecture 24 Beyond 6.006 6.006 Fall 2011

Research Idea: Execution Migration

When program running on a processor needs to access cache memory of another processor,
it migrates its “context” to the remote processor and executes there:

P
$

P
$

migrate
program
“context”

One-way trip for data access

Context = ProgramCounter + RegisterFile + . . . (can be larger than data to be accessed) ' '
fewKbits

Assume we know or can predict the access pattern of a program
m1, m2, . . . , mN (memory addresses)

p(m1), p(m2), . . . p(mN) (processor caches for each mi)

Example

p1 p2 p2 p1 p1 p3 p2

costmig(s, d) = distance(s, d) + L ← load latency L is a function of context size
costaccess(s, d) = 2 ∗ distance(s, d)
if s == d, costs are defined to be 0

 3

Lecture 24 Beyond 6.006 6.006 Fall 2011

Problem

Decide when to migrate to minimize total memory cost of trace For example:

Example: p1 p2 p2 p1 p1 p3 p2

start at p1 migrate
to p2

migrate
to p1

remote
access

remote
access

local accesses

costs

What can we use to solve this problem?
Dynamic Programming!

Dynamic Programming Solution

Program at p, initially, number of processors = Q

Subproblems?

Define DP (k, pi) as cost of optimal solution for the prefix m1, . . . ,mk of memory accesses
when program starts at p1 and ends up at pi.

DP (k, pj) + costaccess if pj (pj, p(mk+1)) = p(mk+1)
DP (k + 1, pj) =

MINi
Q
=1(DP (k, pi) + costmig(pi, pj)) if pj = p(mk+1)

Complexity?

O(N · Q · Q) = O(NQ2)' ' ' '
no.of subproblems cost per subproblem

My research group is building a 128-processor Execution Migration Machine that uses a
migration predictor based on this analysis.

 4

Lecture 24	 Beyond 6.006 6.006 Fall 2011

Lecture 24: Research Areas and Beyond 6.006

Erik’s Main Research Areas

•	 computational geometry [6.850]

–	 geometric folding algorithms [6.849]

–	 self-assembly

•	 data structures [6.851]

•	 graph algorithms [6.899]

•	 recreational algorithms [SP.268]

•	 algorithmic sculpture

Geometric Folding Algorithms: [6.849], Videos Online

Two aspects: design and foldability

•	 design: algorithms to fold any polyhedral surface from a square of paper [Demaine,
Demaine, Mitchell (2000); Demaine & Tachi (2011)]

–	 bicolor paper =⇒ can 2-color faces

–	 OPEN: how to best optimize “scale-factor”

–	 e.g. best n × n checkerboard folding — recently improved from ≈ n/2 →≈ n/4

•	 foldability: given a crease pattern, can you fold it flat

–	 NP-complete in general Bern & Hayes (1996)

–	 OPEN: m × n map with creases specified as mountain/valley [Edmonds (1997)]

–	 just solved: 2 × n Demaine, Liu, Morgan (2011)

–	 hyperbolic paraboloid [Bauhaus (1929)] doesn’t exist [Demaine, Demaine, Hart,
Price, Tachi (2009)]

 5

Lecture 24	 Beyond 6.006 6.006 Fall 2011

–	 understanding circular creases

–	 any straight-line graph can be made by folding flat & one straight cut [Demaine,
Demaine, Lubiw (1998); Bern, Demaine, Eppstein, Hayes (1999)]

Self-Assembly

Geometric model of computation

•	 glue e.g. DNA strands, each pair has strength

•	 square tiles with glue on each side
•	 Brownian motion: tiles/constructions — stick together if glue strengths ≥ temper

ature
lg n•	 can build n × n square using O tiles [Rothemund & Winfree 2000] or using lg lg n

O(1) tiles & O(lg n) “stages” algorithmic steps by the bioengineer [Demaine, Demaine,
Fekete, Ishaque, Rafalin, Schweller, Souvaine (2007)]

•	 can replicate ∞ copies of given unknown shape using O(1) tiles and O(1) stages [Abel,
Benbernou, Damian, Demaine, Flatland, Kominers, Schweller (2010)]

Data Structures: [6.851], Videos Next Semester

There are 2 main categories of data structures

•	 Integer data structures: store n integers in {0, 1, · · · u − 1} subject to insert, delete,
predecessor, successor (on word RAM)

–	 hashing does exact search in O(1)

–	 AVL trees do all in O(lg n)

–	 O (lg lg u)/op van Emde Boas
lg n –	 O /op fusion trees: Fredman & Willard lg lg u

lg n –	 O /op min of above lg lg n

•	 Cache-efficient data structures

–	 memory transfers happen in blocks (from cache to disk/main memory)

–	 searching takes Θ(logB N) transfers (vs. lg n)
N N –	 sorting takes Θ B logC B transfers

–	 possible even if you don’t know B & C !

 6

Lecture 24 Beyond 6.006 6.006 Fall 2011

}

block B
}

block B

c blocks
CPU

FAST SLOW

CACHE DISK/MAIN
MEMORY

(A lmost) P lanar G r aphs : [6.889], V ideos O nline

• Dijkstra in O(n) time [Henzinger, Klein, Rao, Subramanian (1997)]

• Bellman-Ford in O

 n lg2 n

time [Mozes & Wolff-Nilson (2010)]
lg lg n

• Many problems NP-hard, even on planar graphs But can find a solution within 1 + ε

.
r k

k k

k

factor of optimal, for any E [Baker 1994 & Others]:

 7

.

Lecture 24	 Beyond 6.006 6.006 Fall 2011

–	 run BFS from any root vertex r

–	 delete every k layers
1 1

–	 for many problems, solution messed up by only 1 + factor (=⇒ k =)
k	 ε

–	 connected components of remaining graph have < k layers. Can solve via DP
typically in ≈ 2k · n time

Recreational Algorithms

•	 many algorithms and complexities of games [some in SP.268 and our book Games,
Puzzles & Computation (2009)]

2n• n × n × n Rubik’s Cube diameter is Θ [Demaine, Demaine, Eisenstat, Lubiw,
lg n

Winslow (2011)]

•	 Tetris is NP-complete [Breukelaar, Demaine, Hohenberger, Hoogeboom, Kosters, Liben-
Nowell (2004)]

•	 balloon twisting any polyhedron [Demaine, Demaine, Hart (2008)]

•	 algorithmic magic tricks

 8

Lecture 24 Beyond 6.006 6.006 Fall 2011

Algorithms Classes at MIT: (post 6.006)

• 6.046: Intermediate Algorithms (more advanced algorithms & analysis, less coding)

• 6.047: Computational Biology (genomes, phylogeny, etc.)

• 6.854: Advanced Algorithms (intense survey of whole field)

• 6.850: Geometric Computing (working with points, lines, polygons, meshes, . . .)

• 6.849: Geometric Folding Algorithms origami, robot arms, protein folding, . . .

• 6.851: Advanced Data Structures (sublogarithmic performance)

• 6.852: Distributed Algorithms (reaching consensus in a network with faults)

• 6.853: Algorithmic Game Theory (Nash equilibria, auction mechanism design, . . .)

• 6.855: Network Optimization (optimization in graph: beyond shortest paths)

• 6.856: Randomized Algorithms (how randomness makes algorithms simpler & faster)

• 6.857: Network and Computer Security (cryptography)

Other Theory Classes:

• 6.045: Automata, Computability, & Complexity

• 6.840: Theory of Computing

• 6.841: Advanced Complexity Theory

• 6.842: Randomness & Computation

• 6.845: Quantum Complexity Theory

• 6.440: Essential Coding Theory

• 6.441: Information Theory

 9

Top 10 Uses of 6.006 Cushions

10. Sit on it: guaranteed inspiration in constant time
 (bring it to the final exam)

9. 	 Frisbee (after cutting it into a circle)*

8. 	 Sell as a limited-edition collectible on eBay
(they’ll probably never be made again—at least $5)

7.		 Put two back-to-back to remove branding*
(so no one will ever know you took this class)

6. 	 Holiday conversation starter… and stopper
(we don’t recommend re-gifting)

5. Asymptotically optimal acoustic paneling

(for practicing piano & guitar fingering DP)

4.		 Target practice for your next LARP*
(Live Action Role Playing)

3. 	 Ten years from now, it might be all you'll
remember about 6.006
(maybe also this top ten list)

2. 	 Final exam cheat sheet*

1. 	 Three words: OkCupid profile picture

10

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	prelec24_v1
	lec24_v2
	extra_matter
	lec24_lastpg

