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PROFESSOR: Good morning everyone. Morning. Let's get started. So the second of two lectures

on numerics. Last time we had this motivating question of finding the millionth digit

of the square root of 2, or the square root of quantities that end up becoming

irrational. And we talked about high-precision arithmetic, and we use Newton's

method to compute the square roots.

You saw a demo of computing square roots, but there's a few things missing. We

don't quite know how to do division, which is required for the Newton's method, and

we didn't really talk at all about algorithmic complexity beyond talking about the

complexity of multiplication. So multiplication is a primitive that at this point we know

how to do in a couple of different ways, including the naive order n squared

algorithm and the Karatsuba algorithm, which is something like n raised to 1.58.

But how many times is multiplication called when you compute square roots? In fact,

multiplication is called when you call the division operator when you compute square

roots. So there's really two levels off a computation going on here and we need to

open this up, and look at in detail, and figure out what our overall algorithmic

complexity is. So that's really the meat of today's lecture. Getting to the point where

we know what we have with respect to asymptotic complexity of computing the

square root of a number.

So let me start with a review of what we covered last time. We decided that we

wanted the millionth digit of square root of 2. And the way we're going to do this is

by working with integers and computing the floor, since we needed to be an integer,

of 2 times 10 raised to 2d, where d is the number of digits of precision. N over there.

So we'll take a look at an example or two here as to how this works with integers.
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But what we do is compute essentially the floor of some quantity a, the square root

of some quantity a, via Newton's method. And the way Newton's method works is

you go through an iteration. You start with x0 being one, which is your initial guess,

and compute xi plus 1 equals xi plus a divided by xi over 2. And as you can see, this

requires division, because we're computing a divided by xi. That's the outer Newton

iteration.

And I said a couple of things that's said you are going to have a quadratic rate of

convergence. The precision with respect to the number of digits is going to increase

by a factor of 2 every iteration. And so if you started out with one digit of precision,

you go to two, then four, eight, et cetera. And so that's a geometric progression.

And that means that we're going to have a logarithmic number of iterations, which is

nice. And we were all happy about that, and you believed me. I gave you an

example and it looked pretty good, but didn't really prove anything about the rate of

convergence.

What I'd like to do now is take a look at this particular iterative computation, where

we're computing xi plus 1 given xi , and argue that this, in fact, has a quadratic rate

of convergence. So you can think of this as doing an error analysis of Newton's

method.

And let's say that xn equals square root of a 1 plus epsilon n, where epsilon may be

positive or negative. So we have an error associated with xn in the n-th iteration with

respect to what we want, which is the square root of a. And it's off by something. It

may be a large quantity in the beginning. We want to show convergence, so

obviously we want epsilon n, as n becomes large, do tend to 0. How fast does this

approach 0? That's the question.

And so if you take this equation and plug this into that, and say, what is xn plus 1?

xn plus 1 would be square root of a times 1 plus epsilon n plus a divided by square

root of a 1 plus epsilon n divided by 2. Just plugging it in, the value of xn. And then

some a couple of steps of algebraic simplification, you can pull out the square root

of a here, then you have 1 plus epsilon n, 1 divided by 1 plus epsilon n over here.
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The whole thing divided by 2.

And if you keep going-- there's one step that I'm skipping here in terms of

simplification, but let me write this last result out. Which is xn plus 1 is square root of

a times 1 plus epsilon n squared divided by 2 times 1 plus epsilon n down at the

bottom.

So what do we have here in terms of the overall observation for epsilon n plus 1,

which is the error in the n plus 1-th iteration given that you have an epsilon n error

in the n-th iteration? You have a relationship like so where epsilon n plus 1 is related

to epsilon n whole square. And this part here, as n becomes large, epsilon n is

going to go to 0 assuming a decent initial guess.

And so you can say that this is essentially 1, which means you have this quadratic

rate of convergence where the error, which is a small quantity, is getting squared at

every iteration. And so if you have something like a 0.01 error at the beginning for

epsilon n, epsilon n squared is going to be 0.0001. So that's where you get the

quadratic rate of convergence. So it really comes from this relationship, the

relationship epsilon n squared to epsilon n plus 1, Any questions about this?

Great. So if you have the quadratic rate of convergence, if you want to go to d digits

of precision like I have here, you can argue that you need to log d iterations. So

that's kind of nice, you have a logarithmic number of iterations. I'm going to get back

to that. There's one little subtlety that is associated with asymptotic analysis that

goes beyond simply the number of iterations that you have and the digits of

precision. But so far so good.

We're happy with this logarithmic number of iterations. And if we can now compute

the complexity of the division, then obviously we need an algorithm for that. But if

you have an algorithm and we figure out what the complexity of the division

algorithm is, then we have complexity for the square root of 2 or square root of a

using Newton's method.

So just justified what I said last time with respect to quadratic rate of convergence.
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And then we talked about multiplication last time. I want to revisit that. You have

multiplication algorithms, and we want to be able to multiply d digit numbers. And

the naive algorithm. And you could imagine doing divide and conquer. So you take

x1, x0; y1, y0 where x1 is the most significant half of x. You're trying to multiply x

times y. And same thing for y1 and y0. So each of these will have d by 2, digits of

precision. And if you implement the naive algorithm that looks like tn equals 4 tn by

2 plus theta n, you end up with theta n squared complexity out so you have to do

four multiplications corresponding to x1 times Y1 x1 times y0, et cetera.

And at each level in the recursive tree, you're breaking things down by a factor of 2

respect to the digits of precision that you need to multiply on as you're going down

the tree. And this is the four multiplications. You get your theta n squared

complexity. This gentleman by the name of Karatsuba recognized that you could

play a few mathematical tricks, which I won't go over again, but reduce to three

multiplications. And you do a few more additions, but given that the additions have

theta n complexity, the recurrence relationship turns into tn equals 3t of n over 2

plus theta n. And this ends up having 1.58 dot dot dot complexity.

No reason to stop with breaking things up into two parts. You could imagine

generalizing Karatsuba and people have done this. Two different researchers,

Toom and Cook, generalized Karatsuba for the case where k is greater than or

equal to 2, where you're breaking it into k parts. So the Toom-Cook 2 algorithm is

basically Karatsuba, but you have Toom 3, Toom 4, and so on. And I'm not going to

give you a lot of details on this. We don't expect you to work on this, at least in

6006.

But just to give you a sense of what happens, the Toom 3 method, or the Toom-

Cook 3 method, breaks and number up into three parts. So each of these would

have d by 3 digits of precision. So this is what you're starting out with. You're

starting out with a d digit number. But the very first level of recursion, you're going to

break things up into three xi numbers that are d by 3 digits long. Same thing for y.

And if you did a naive multiplication of this, how many multiplications do I need? If I

just forget about any mathematical tricks, if I just tried to multiply these things out,
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how many d by 3 by d by 3 multiplications do I need?

AUDIENCE: Nine.

PROFESSOR: Nine. So if you can beat nine using mathematical tricks, you have a better divide

and conquer algorithm. And it turns out that Toom 3 plays some arithmetic games

and ends up with a recurrence relationship that looks like this. Where you reduce

the nine multiplications down to five. So that's a win. And that ends up being theta of

n raised to what? Someone? Someone loudly. Log--

AUDIENCE: Base 3.

PROFESSOR: Log with a base 3 of 5. Another irrational number. And this ends up being n raised

to 1.465. So you won. If you use Toom 3, assuming the constants worked out-- and

Victor can say a little bit more about that, because we're having a little trouble

justifying this particular problem set question that we want to give you, given the

constant factors involved. So the issue really here is this is correct. It's n raised to

1.46. That's n raised to 1.5. And then the naive algorithm is n square.

But how big does n have to be in order for the n raised to 1.58 algorithm to beat the

n square algorithm, and for the n raised to 1.46 algorithm to beat the n raised to

1.58 algorithm, et cetera. And it turns out n needs to be really, really large if you

implement these in Python. So if you're having a little trouble here, giving you this

pristine problem set that you can go off and learn about multiplication, and also

appreciate asymptotic complexity. So that's a bit of a catch-22.

Anyway, for the purposes of theory, this is great. It turns people have done even

better. Multiplication is just this obviously incredibly important primitive that you

would need for doing any reasonable computation. And so people have worked on

using things like fast Fourier transforms and other techniques improve the

complexity of multiplication. And best scheme until a few years ago was this scheme

called Schonhage-Strassen scheme, which is almost linear in complexity. It's n log n

log log n time. And this uses the fast Fourier transform, FFT.

And you can play with all of these things. You can play with Karatsuba the naive
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algorithm, Toom 3, et cetera in the gmpy package in Python. And you can see as to

what the value of n needs to be in order for one of these algorithms to beat the

other. This is not something that you're going to do specifically in the problem set,

but I say that as an aside. These algorithms are implemented, and they're used in

real life. Eric?

ERIC: It may be worth mentioning that Python itself for long integers uses Karatsuba.

PROFESSOR: Yeah, so Python uses-- beyond a certain n, you are going to have decisions that are

made within the package. And Python shifts to Karatsuba after n becomes large.

But if n is small, then it's going to run the naive algorithm. Now if you write your own

multiplication, you can do whatever you want. You can have your own adaptive

scheme, assuming you have many of these algorithms implemented, or you're

calling them using the gmpy package.

So lastly, this looked pretty good for a while. And from a theoretical standpoint there

was a breakthrough. Guy by the name of Furer came up with this algorithm that is n

log n-- and let me write this carefully-- 2 raised big O-- that's an upper bound-- of

log star n. That makes sense? No. I'll have to explain it.

OK, so what does this mean? This part is clear. This is like sorting. It doesn't need

to really use sorting, but that's n log n. And then you have this 2 raised to big O log

star n. I need to define what log star n is. And log star n is what's called the iterative

algorithm-- logarithm, rather. I guess it's an iterative algorithm, but it computes logs.

And the iterative logarithm is the number of times log needs to be applied to get a

result that is less than or equal to 1.

So this thing really cuts you down to size really fast. So it doesn't matter. You could

be a 10 raised to 24, or 2 raised to 50, let's say, if you were doing binary logs. And

in the very first iteration you go down to 50, right? And then you take a log of 50 and

you go down to about 7 or something. And then you take the log of 7. And if you're

talking about base 2, like we were, you're down to less than 3. And so four or five

iterations, you're down to less than or equal to 1. And that's what log star n

computes. It's not the logarithm as much as the number of times so you have to
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apply log to get the result that's less than or equal to 1.

So you have these giant numbers, and it's only like five, six, eight times do you

apply log and you're down to one. So for all practical purposes, you can think of--

and this is upper bound-- you can think of this, even though this is 2 raised to

something, it's 2 raised to a pretty small number. 2 raised to 10, that would be

1,000. And so from an asymptotic complexity standpoint, this is the winner. From a

practical standpoint, Schonhage-Strassen is really what you probably want to use

when n becomes very large, to the billions and so on and so forth.

And as of now, to the best of my knowledge this hasn't been implemented in the

gmpy package. So if you actually want to use gmpy, this is where you stop.

So that's multiplication. So we have a bunch of different ways that you could do

multiplication. What I'd like to do is give you a sense of assuming a given complexity

of multiplication, how long would division take? So we are 1 and 1/2 lectures in, and

I haven't really told you how we're going to do division, which is what we have to do

when we compute a divided by xi, which is the basic integration in the Newton

method. So let's get to that.

So finally high-precision division. So we want a high-precision rep off a divided by b.

And we're going to compute a high-precision rep off 1 divided by b first. And what

we mean by that is that we'll compute r divided by b floor where r is a really large

value. And more importantly, it's easy to divide by r in a particular base. So for

example, r equals 2 raised to k, when we use base 2, you can easily divide through

a shift operator.

So if I give you r divided by b and I give you this long computer word that's in base

2, which typically could have millions of digits in its representation, I can shift that by

the appropriate amount to a given r divided by b. I can get 1 over b by shifting that

quantity. So it feels like, hey wait a minute. Why are we dividing by r?

Well remember that you want 1 over b. And if you're computing r divided by b floor,

and you actually want 1 over b, which then you could use to multiply by a so you
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can run your Newton iteration, then you want to divide by r. And that division is

essentially going to be something that shifts things to the right. So the most

significant bits move to the right, and you get a smaller number. That make sense?

So we all know how to divide by using shifting assuming the bases work out right.

And if you had a representation that was decimal, suddenly you could certainly

divide by 10 raised to k. That's easy. You've done this many times. But you just

changed the decimal point when you're working with decimal arithmetic. When you

divide 72 by 100 and you get 0.72. And that's a very similar notion here. It doesn't

really matter what base you're talking about.

So that's the setup. That's how are we going to try and tackle this division problem.

But we still have this problem of computing r divided by b. So how are we going to

compute r divided by b? And we want this to be a large number of digits of

precision. So we're going to use Newton's method again. You've got some non-

linearity here with respect to 1 over x. And we're gonna use Newton's method again.

And we'll have to hope that this works out, that we can get Newton's method, it'll

converge, and it'll require operations that we know how to do. And all of this is going

to work out really well.

I'm going to set up a function, f of x equals 1 divided by x minus b divided by r. So

what this means is that this function has a 0 at x equals r divided by b. So if I try and

find the 0 of this function, and I start out with a decent initial guess, I'm going to end

up with r divided by b. And if I'm working with integers, effectively that's the floor that

I have for r divided by b. And then I do my shift and I end up with 1 over b.

So someone who remembers differentiation, if you're gonna apply Newton's

method, tell me what the derivative of f of x is. Somebody's stretching at the back,

but I don't think that was an answer. Someone at the back? Too easy a question?

For the cushion.

AUDIENCE: 1 over negative x squared.

PROFESSOR: 1 over negative x squared. Who's that? All right. You can come pick this up.
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Whatever. Cut the monotony here. Just veered to the left. I think next time I'm going

to weight them or something. Let's just do frisbees next time. Let's just do frisbees

next time. It makes it easy. Forget cushions. No? Frisbees or cushions? How many

want frisbees? How many want cushions? Frisbees win.

So you got derivative of x is minus 1 divided by x squared. And then if you go off

and apply Newton's method-- and I'm not going to go through the symbolic

equations here associated with Newton's method-- but that's basically the same as

we did before. You are computing a tangent, and the new value of xi plus 1 given

the value of xi is the x-intercept. And we needed the derivative to compute that.

But bottom line, you have xi plus 1 equals xi minus f of xi divided by f prime of xi. So

that's the Newton iteration. And it's worth plugging in the various values here. 1

divided by xi minus b divided by r. That's f of x on top divided by minus 1 divided by

xi square. So that's the derivative over here. So all I'm doing is plugging things in.

But you want to visualize this because this is really what we need to compute. And

we have xi plus 1 equals xi plus xi square times 1 over xi minus b divided by r. And

finally I get 2xi minus b xi square divided by r. That is key. This is pretty important.

So let's us look all the way to the left, which is xi plus 1, all the way to the right, 2

times xi. That doesn't scare us, 2 times something. Especially base 2, pretty easy.

That's a multiply. Multiplies don't scare us because we know how to do multiplies

anyway. This is a simple multiply. And then I got a square here. Square. Not a

square root. Squares don't scare us because that's a multiply, just multiplying the

same number to itself. And this doesn't scare us because we know that we've

chosen r to be an easy division.

So all of the operations here are either easy, or they require a multiply. So

remember I'm going to put a picture up towards the end here that tells you the

overall structure for computing square root of a or square root of 2. But we've just

sort of sold out to Newton, if you will. Because we said that we're going to use

Newton's method to compute essentially, iteratively, square root of a. And within the

Newton method, the first iteration, if you will, of the Newton method, we had to
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compute a reciprocal. We had to compute 1 over xi. And in order to compute 1 over

xi, we're going to apply Newton's method again like I showed over here and over

there.

And so that division is going to require iteration. But the iteration at the second level

is one of multiplication. You're gonna repeatedly apply multiplication because you're

going to go xi plus 1 based on xi using multiplication and some easy operations.

And then you go xi plus 2, xi plus 3, and so on and so forth. That make sense? I'll

try and put this up to give you the complete picture once we're done talking about

the division algorithm and its complexity.

But before I do that, I just want to give you a sense of the convergence of this

scheme. Again, I want to give you an example first, and then I'll argue about the

convergence. You have to run this iteratively. You've got to make i to get to the

point where it's large enough that you have your digits of precision. And just as an

example, let's say we want r divided by b equals 2 raised to 16 divided by 5. So this

is a fairly straightforward example. But when you get up to integers, it turns out it's

evocative.

So r was selected to be 2 raised to k to make for easy division. And what I really

want is that. And I want to see how I get to that using Newton's method. And our

initial guess, let's say we try 2 raised to 16 divided by 4, because we know how to

divide by a power of two. And so that's 2 raised to 14. And that's our initial guess.

So think of that as being x0. That is x0. And that 16384. x1 is going to be 2 times

16384, which is exactly that, minus 5 times 16384 whole square.

So now you're starting to square a fairly big number. And obviously if you'd started

with an even bigger r, this would be a large number. You go 65536 equals-- and this

is 12288. So you really have one digit of precision there. But the next time around,

you get 2 times 12288 minus 5 times 12288 square divided by 65536. And this

division is easy. It's a shift. You get to 13056. And I won't write this whole thing out,

but if you take that, the next thing you'll get is 13107.

So as you can see, there's rapid convergence here. And you can actually do a very
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similar analysis to the epsilon analysis-- and I'll put it in the notes, but I won't do it

here-- that I did for the square root iteration to show that you have a quadratic the

rate of convergence when you apply Newton's method to division as well.

So you can prove that using the symbolic analysis than we did very similar to the

epsilon n relationship to epsilon n plus 1. I'd suggest that it's a difference equation

here so that analysis is not exactly the same. But you can run through that, and you

can read that in the notes.

So we're in business. Finally things are looking up with respect to being able to

actually implement this in practice. I want to talk about complexity. And I promise

that there was a subtlety associated with the complexity of division in relation to

multiplication, but let me just go over and write down what I just told you with

respect to the number of iterations that division requires.

So division, quadratic convergence. So number of digits doubles at each step. Good

news. So d digits of precision, log d iterations. Now let's say that we have a

particular algorithm for multiplication that I'm just going to say, since we have so

many different algorithms, I'm going to say multiplication in theta n raised to alpha

time, where alpha is greater than or equal to 1. I just want to be general about it.

And so assuming that I have a multiplication algorithm, that can run in theta n raised

to alpha, where clearly you know alpha can be 1.46 for Toom 3, et cetera. And it's

not quite that for Schonhage-Strassen, but I just want to be working with one

particular complexity. So I'll parameterize it in this fashion. And everything I say is

going to be true for Schonhage-Strassen and Furer as well.

But first, easy question. What is the complexity of division using the analysis that I've

put on the board so far? n digit numbers it's going to be? I wanna hear from you.

How many hard multipliers do I have? Log of?

AUDIENCE: n.

PROFESSOR: Log of n, right? It wasn't a hard question. So division would be theta log n times n

raised to alpha. Everybody buy that? No? Ask a question if you're confused. Maybe
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I should say everybody buy that? How many people agree with that? Big O? How

many people agree with that? Yeah, that's right. Big O. I'm hedging my bets here.

I'm just saying big O. I could say big O of n cubed and you should all agree with me.

Or big O of whatever. You had a question?

AUDIENCE: What's the longest [INAUDIBLE] number of [INAUDIBLE] we need to get a certain

level of [INAUDIBLE]?

PROFESSOR: That's right. So if you want d digits of precision, then according to this argument--

and I think you guys are a little doubtful here because I kept talking about subtleties,

and in fact there's a subtlety here, which I want to get to-- but this big O thing is

perfectly correct. But to answer your question, yes. Let's assume that it's n digits of

precision. That's what we assume whether it's n or d. You can plug in the

appropriate symbol here.

And we're saying that, look, every iteration is bounded by n raised to alpha

complexity for the multiply. And I'm going to do a logarithmic number of iterations.

So I end up getting log n times n raised to alpha. So that is correct, in fact. Big O is

correct.

So now it comes to the interesting question, which is can you do a better analysis?

So this sort of hearkens back to three weeks ago, maybe you've forgotten. Maybe

you've blanked it out of your memory, but I thought I described to you build max-

heap. And we had this straightforward analysis of build max-heap that was n log n

complexity. And then we looked at it a little more carefully, and we started adding

things up much more carefully. We turned into bank accountants. And then we

decided that it was theta n complexity. People remember that? Right?

So I want you to turn into bank accountants again, and then tell me first, there's a

nice observation that you can make here that we haven't made yet with respect to

the size of these numbers. We know what we want to eventually, but there's a nice

observation we can make it with respect to the size of these numbers. And then we

want to exploit that observation to do a better analysis of the theta complexity of

division.
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So who wants to tell me what the observation is. This is definitely worth a cushion.

What's the observation? I want to end up with d digits of precision. If I give you

another hint, I'm gonna give it away. Someone tell me.

This is a dynamic process, OK? So what do I start with? What do I start with? If I

want to compute something and you want to use Newton's method, what do you

start with? Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: You start with one digit of precision. That's fantastic. I don't know if you already

have a cushion or not, but here's the second one. So you start with a small number

of digits of precision. And then you end up with a large million, whatever, number,

which is your d. So what does that mean?

So now somebody take that and run with it. Somebody take that and run with it. You

already have a cushion. Like many? You guys, usual suspects. So someone take

that and run with it. What can I do now? What does it mean if I start with a small

number of digits of precision? My initial guess was one, right? I mean, that had one

digit of precision. And then the number of digits doubles with each step. So is there

any reason why I'm doing, if I had d digits of precision, eventually that I'll have to do

d digit multiplies in each iteration? Any reason why? Yeah.

AUDIENCE: You don't have to, because [INAUDIBLE] multiplies are going to be trivial. And

[INAUDIBLE] then you're going to eventually approach the d to the alpha iteration.

PROFESSOR: That's exactly right. Exactly right. That's worth a cushion. But now I want you or

someone else, tell me what the iteration looks like. So this is the key observation.

The key observation is that if I want d digits of precision, I'm going to start with

maybe one digit of precision. So this is d of p, or dig of p, not to be confused. I start

with 1, 2, 4, and I end up with d. And our claim was that this was log d iterations,

right? So the initial multiplies are easy. Initially you're doing constant work if you

have really small numbers associated with these multiplies. It's only towards the end

that you end up doing a lot more work, right?
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that you end up doing a lot more work, right?

So someone tell me if I have n raised to alpha, and if I say I want to write an

equation. And I don't want to use theta here. I'm going to use constants because I

want to add up constants, and it's a little iffy then you add up thetas. You need to be

looking at constants. Now I can imagine that for this iteration, the very first one, that

I have something like c times 1 raised to alpha, because it's just a single digit of

precision. OK And the next one, I'm using the same algorithm. This is c times 2

raised to alpha, c times 4 raised to alpha.

And then out here I'm going to have c times d by 4 raised to alpha plus c times d by

2 raised to alpha plus finally c times d raised to alpha. And someone give me a

bound. Who wants to give me a bound on this? Who wants to give me a bound on

this? Less than or equal to. Let's just make it less than. What? Someone? Just plug

in a value of alpha. And remember your convergent geometric series and things like

that. What is that? Someone? Yeah.

AUDIENCE: Just some constant times d to the alpha?

PROFESSOR: That's exactly right. Just some constant times d to the alpha. And in fact, you can

say, it's 2c d to the alpha. Keep a question for you aside. So that' sit. That's the little

careful analysis that we had to do, which basically without changing your code,

really, suddenly gave you a better complexity. Isn't that fun? That's always fun. You

had this neat algorithm to begin with. And bottom line is you're just computing things

a little more accurately, than essentially saying that you had to do all of this work

with large number of digits of precision at every iteration. The number of digits

actually increases.

So what does this mean? I guess ultimately, the complexity of division is now what?

It's the same as the complexity of multiplication, right? So regardless of whether we

did a Newton iteration or not, the complexity of division. You are doing a logarithmic

number of iterations, but since eventually all of the work is going to get done at the

end here. Most of the work is getting done at the end when you have these long

numbers. That's basically the essence of the argument.
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So let me finish up and talk about the complexity of computing square roots. And as

you can imagine, even though you have two nested Newton iterations here, you can

make basically the same argument. So let's recall what we're doing in terms of

computing square roots. We want to compute square root of a. And we said, well we

don't quite know how to do this. We're going to end up doing 10 raised to 2d times

a, and we're going to run Newton's method on it. So you've got one level of

Newton's method. And the iteration here with respect to Newton's method is

something like xi plus 1 equals xi plus a divided by xi.

Now every time you do that for a particular xi, you're going to end up having to call a

division. So you're going to call a division here, and then you're going to call a

division here. For each iteration you have to call a division. And what we're saying

is, well we're going to end up having to call for each of these division methods we're

going to call Newton's method. And what that is something like 2xi minus b xi square

divided by r. And that's going to be a bunch of multiplications.

And what we argued up until this point was that the complexity of the division, even

though we had a bunch of iterations here, a logarithmic number of iterations, the

complexity of the division was the same as the complexity of the multiplication

because the numbers started out small and grew big. All right? Everybody buy that?

I'm going to use exactly the same argument for this level of iteration as well. And

again, when you start out with the digits of precision corresponding to square root of

2, you're going to start out guessing 1.5, which is your initial guess for the square

root of 2, and it's going to be a small number of digits of precision. And eventually

you'll get to a million digits. So using essentially the same equation summing, you

can argue that the complexity of computing square roots is the complexity of

division, which of course is the complexity of multiplication.

And that's the story. So obviously the code would be a little more complicated than a

multiplication code, because you have all this control structure outside of it. It's

really two nested loops. The multiply is getting called a bunch of times to do the

divide, and the divide is getting called a bunch of times to compute the square root.
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But ultimately, because the numbers are growing and you start out with small

numbers, most of the work is done when you get to the millions of digits of

precision. And you basically have theta n raised to alpha complexity for computing

square roots. If you have n raised to alpha multiply, and you want n digits of

precision. All right? See you next time. Stick around for questions.
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