
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology May 9, 2008
Professors Srini Devadas and Erik Demaine Handout 13

Final Practice Problems

1 Subset Sum

You are given a sequence of n numbers (positive or negative):

x1, x2, . . . , xn

Your job is to select a subset of these numbers of maximum total sum, subject to the constraint that

you can’t select two elements that are adjacent (that is, if you pick xi then you cannot pick either

xi−1 or xi+1).

Explain how you can find, in time polynomial in n, the subset of maximum total sum.

Solution: Let sumi be the maximum sum of the numbers x1, x2, . . . , xi given the adjacency

constraint.

sum0 = 0

sum1 = max(0, x1)

sumi = max(sumi−2 + xi, sumi−1)

This last step works because either we include xi, in which case we also want to include the best

solution on up to i − 2, or we don’t include xi, in which case we can just use the best solution on

i − 1.

Our final answer is then just sumn.

To calculate the set that gives the max sum, we could simply keep pointers back from i to either

i − 1 or i − 2 depending on which one was bigger (or we could go back and check which was

bigger). We follow those pointers, including appropriate numbers.

Because there are n subproblems, and each subproblem takes O(1) time to solve, this runs in O(n)

time.

2 Handout 13: Final Practice Problems

2 Collecting Coins

You are given an n-by-n grid, where each square (i, j) contains c(i, j) gold coins. Assume that

c(i, j) ≥ 0 for all squares. You must start in the upper-left corner and end in the lower-right corner,

and at each step you can only travel one square down or right. When you visit any square, including

your starting or ending square, you may collect all of the coins on that square. Give an algorithm

to find the maximum number of coins you can collect if you follow the optimal path.

Solution: We will solve the following subproblems: let dp[i, j] be the maximum number of coins

that it is possible to collect while ending at (i, j).

We have the following recurrence:

dp[i, j] = c(i, j) + max(dp[i − 1, j], dp[i, j − 1])

We also have the base case that when either i = 0 or j = 0, dp[i, j] = c(i, j).

There are n2 subproblems, and each takes O(1) time to solve (because there are only two subprob

lems to recurse on). Thus, the running time is O(n2).

Handout 13: Final Practice Problems 3

3 True/False

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

1. Any Dynamic Programming algorithm with n subproblems will run in O(n) time.
True False

Explain:

Solution: False. The subproblems may take longer than constant time to compute, as was
the case with with longest increasing subsequence.

2. Karatsuba’s method is based on the use of continued fractions.
True False

Explain:

Solution: False. Karatsuba has nothing to do with continued fractions.

3. Newton’s Method for computing
√

2 essentially squares the number of correct digits at each
iteration.
True False

Explain:

Solution: False. Newton’s method for computing
√

2 has quadratic convergence, which
means the number of correct digits doubles after each iteration.

4 Handout 13: Final Practice Problems

4 Numerics

3Suppose we are trying to compute
√

9 (the cube root of 9).

Explain carefully how one iteration of Newton’s Method works for this problem, starting
with an initial guess of x0 = 2. (Hint: the function to use is f(x) = x3 − 9.) Be sure to
derive carefully the value of x1.

Solution:

f(x0)
x1 = x0 −

f �(x0)
x0

3 − 9
x1 = x0 −

3 ∗ x2
0

x1 = 2 −
23 − 9
3 ∗ 22

x1 = 2 − −1
12

25
x1 =

12

