Examples of Uniform EM Plane Waves

<u>Outline</u>

Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves Coupling of Electric and Magnetic Fields

Maxwell's Equations couple H and E fields...

Magnetic Field in a Uniform Electromagnetic Plane Wave

Uniform Electromagnetic Plane Waves In Materials

$$\frac{\partial B_x(z_0)}{\partial z} = \epsilon \mu \frac{\partial E_y}{\partial t}$$

$$B_x$$

$$B_x$$

$$\hat{z}$$

$$\hat{z}$$

$$F_y = f_+(t - z/v_p) + f_-(t + z/v_p)$$

$$H_x = -\sqrt{\frac{\epsilon}{\mu}} \left(f_+(t - z/v_p) - f_-(t + z/v_p) \right)$$
... where
$$v_p = \frac{1}{\sqrt{\mu\epsilon}}$$
is known as the phase velocity

$$\frac{The \ Characteristic \ Impedance}{E_y = f_+(t - z/v_p) + f_-(t + z/v_p)}$$
$$H_x = -\sqrt{\frac{\epsilon}{\mu}} \left(f_+(t - z/v_p) - f_-(t + z/v_p) \right)$$

$$\begin{bmatrix} \Omega \frac{A}{m} \end{bmatrix} \eta H_x = \eta H_{x+} + \eta H_{x-} = -E_{y+} + E_{y-} \begin{bmatrix} \frac{V}{m} \end{bmatrix}$$

• *n* is the *intrinsic impedance* of the medium given by

$$\eta = \sqrt{\frac{\mu}{\epsilon}}$$

• Like the propagation velocity, the intrinsic impedance is independent of the source and is determined only by the properties of the medium.

$$\eta_o = \sqrt{\frac{\mu_o}{\epsilon_o}} \approx 377 \text{ Ohms} \approx 120 \,\pi \text{ Ohms}$$

$$\frac{Phasor Notation for Uniform Plane Waves}{E_y = A_1 cos(\omega t - kz) + A_2 cos(\omega t + kz)}$$
$$= \operatorname{Re} \left(A_1 e^{j(\omega t - kz)} \right) + \operatorname{Re} \left(A_2 e^{j(\omega t + kz)} \right)$$

$$H_x = -\frac{A_1}{\eta} \cos(\omega t - kz) + \frac{A_2}{\eta} \cos(\omega t + kz)$$
$$= \operatorname{Re}\left(-\frac{A_1}{\eta} e^{j(\omega t - kz)}\right) + \operatorname{Re}\left(\frac{A_2}{\eta} e^{j(\omega t + kz)}\right)$$

Imaginary numbers are noted differently in science and engineering disciplines. While scientists use I, engineers use j. The relation between the two is as follows:

$$i = -j$$

Both scientists and engineers think that their version of the imaginary number is equal to $\sqrt{-1}$ and independently, over time, they developed equations for identical physical relations that can now only be reconciled if *i* is set to be equal to *-j*

Sinusoidal Uniform Electromagnetic Plane Waves

so that ...

$$f_{+}(t - z/v_{p}) = A\cos(\omega(t - z/v_{p})) = A\cos(\omega t - kz)$$
$$f_{-}(t + z/v_{p}) = A\cos(\omega(t + z/v_{p})) = A\cos(\omega t + kz)$$

Sinusoidal Uniform Electromagnetic Plane Waves

Energy Density of a Uniform Plane Wave

$$E_y = f_+(t - z/c) + f_-(t + z/c)$$
$$H_x = -\sqrt{\frac{\epsilon_o}{\mu_o}} \left(f_+(t - z/c) - f_-(t + z/c) \right)$$

Using less cumbersome notation

 $\frac{W_E}{V} = \frac{W_M}{V}$

Power Flow of a Uniform Plane Wave

$$\frac{P}{A} = c \left(\frac{W_E}{V} + \frac{W_M}{V} \right)$$
$$= c \frac{2W_M}{V}$$
$$= |\vec{E}| \cdot |\vec{H}|$$

$$\frac{\vec{P}}{A} = \vec{E} \times \vec{H}$$

$$---- Poynting Vector,
named after
John Henry Poynting (1852-1914)$$

Poynting's Theorem

EM Power Flow

Q: How does power flow from the battery to the light bulb?

The wires serve only to guide the fields.

A: Through the EM fields, which are guided by the wires.

EM Power Flow

Poynting's Theorem also explains how electrical energy flows from the source through the transformer to the light bulb in the circuit below.

Amplitude & Intensity

How *bright* is the light?

	<u>Amplitude, A</u>	Intensity, I
<i>Sound wave</i> : (loudness)	peak differential pressure p_o	power transmitted/area
<i>EM wave</i> : (brightness)	peak electric field E _o	power transmitted/area

Power transmitted is proportional to the square of the amplitude.

$$Intensity = |\vec{E}| \cdot |\vec{H}| = \frac{E^2}{\eta} = \eta H^2$$

Superposition of EM Waves of the Same Polarization

Two E_y -polarized EM waves are incident on the same surface. EM Wave #2 has four times the peak intensity of EM Wave #1, i.e., $I_2 = 4I_1$

1. What is the maximum intensity, I_{max} ?

(a)
$$4I_1$$

(b) $5I_1$ $A_2 = \sqrt{I_2} = \sqrt{4I_1} = 2\sqrt{I_1} = 2A_1$
(c) $9I_1$ $I_{tot} = (A_{tot})^2 = (A_1 + A_2)^2 = (A_1 + 2A_1)^2 = 9A_1^2 = 9I_1$

2. What is the minimum intensity, I_{min} ?

(a) 0
(b)
$$I_1$$

(c) $3I_1$ $I_{tot} = (A_{tot})^2 = (A_1 - A_2)^2 = (A_1 - 2A_1)^2 = A_1^2 = I_1$

Pop - Question

If you added the two sinusoidal waves shown in the top plot, what would the result look like ?

Adding Waves with Different Phases

Example: Suppose we have two waves with the same amplitude A_1 and angular frequency ω . Then their wavevectors k are also the same. Suppose that they differ only in phase φ :

The Electromagnetic Spectrum

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

October 2003

Image from http://www.ntia.doc.gov/osmhome/allochrt.pdf, in public domain

Electromagnetic Fields in Laser Drilling

What are intensity I, f, E, H for a 1000-J laser emitting a 1 nsec pulse at λ = 1 µm when focused on a 1 mm² spot?

How many cycles in the pulse?

What is approximate *E* required to spontaneously ionize an atom within one cycle?

{we want energy transferred $qE \cdot d$ to roughly exceed electron binding energy within nominal orbital diameter d}

Image by Jasper84 (Metaveld BV) <<u>http://commons.wikimedia.org/wiki/File:Lasersnijden_laserkop.jpg</u>> on Wikimedia, also used for <<u>http://www.metaveld.com</u>>

Electromagnetic Fields from a Cell Phone and the Sun

$$Intensity = \frac{Power}{Area} = |\vec{E}| \cdot |\vec{H}|$$

What are I, f, E, H for a cell phone radiating 1-watt of power over 1 m² of Uniform Plane Waves at 1 GHz?

The energy intensity of sunlight shining on Earth is on the order of ~1000 W/m². What is the amplitude corresponding E field ?

If we are going to power the World with solar-generated energy, how much land area has to be covered with Solar Cells?

World Land Area =149 million km² World Land/Water Area =510 million km²

US Land Area (48 states) 7.5 million km²

World Consumed Energy at the rate of 15.8 TW in 2006

US consumed Energy at the rate of 3TW

sun at $\sim 37^{\circ}$: air mass 1.5 (AM1.5)

Solar spectrum outside atmosphere: air mass 0 (AM0) 844 W/m² ← Terrestrial Solar cell standard

1353 W/m²

Photovoltaics

-The average power incident upon the surface of the Earth from sunlight is <u>~10,000 times</u> the average global power consumption.

- The average power incident upon the continental United States is ~<u>500 times</u> our national consumption (total energy consumption, not just electricity).

If ~2% of the continental United States is covered with PV systems with a net efficiency of 10% we would be able to supply all the US energy needs

(Note: This is an overestimate. We need only 0.35% of US land for PV electricity generation) (Note: 40% of our land is allocated to producing food)

Earth and solar panel images are in the public domain

Summary of Properties of a Uniform Plane Waves

- 1. Propagation velocity $v_p = \frac{1}{\sqrt{\mu\epsilon}}$ with $c = \frac{1}{\sqrt{\epsilon_o \mu_o}}$
- 2. No Electric of Magnetic field in direction of propagation
- 3. Electric field normal to magnetic field
- 4. Value of electric field is $\underline{\eta}$ times that of magnetic field at each instant
- 5. Direction of propagation given by $\vec{E} \times \vec{H}$
- 6. Energy stored in electric field per unit volume <u>at any instant at any point</u> is equal to energy stored in magnetic field
- 7. Instantaneous value of the Pointing vector given by $\frac{E^2}{n} = \eta H^2 = |\vec{E} \times \vec{H}|$
- 8. Superposition of EM Plane waves of same frequency and phase adds their electric fields.

$$Intensity = \frac{Power}{Area} = |\vec{E}| \cdot |\vec{H}|$$

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.