Birefringence

<u>Outline</u>

- Polarized Light (Linear & Circular)
- Birefringent Materials
- Quarter-Wave Plate & Half-Wave Plate

Reading: Ch 8.5 in Kong and Shen

True / False

1. The plasma frequency ω_p is the frequency above which a material becomes a plasma.

2. The magnitude of the \vec{E} -field of this wave is 1

$$\vec{E} = (\hat{x} + \hat{y})e^{j(\omega t - kz)}$$

3. The wave above is polarized 45° with respect to the x-axis.

Sinusoidal Uniform Plane Waves

 $E_y = A_1 \cos(\omega t - kz)$

 $E_x(z,t) = \hat{x}Re\left(\tilde{E}_o e^{j(\omega t - kz)}\right)$ $E_y(z,t) = \hat{y}Re\left(\tilde{E}_o e^{j(\omega t - kz)}\right)$

The complex amplitude, \tilde{E}_o , is the same for both components.

Therefore E_x and E_y are always in phase.

Where is the magnetic field?

5

Superposition of Sinusoidal Uniform Plane Waves

$$\overline{E} = A\left(\cos(\omega t - kz)\,\hat{y} + \cos(\omega t - kz)\,\hat{x}\right)$$

Arbitrary-Angle Linear Polarization

$$E_x(z,t) = \hat{x} \operatorname{Re}\{\tilde{E}_o \cos(\phi) \exp[j(\omega t - kz)]\}$$
$$E_y(z,t) = \hat{y} \operatorname{Re}\{\tilde{E}_o \sin(\phi) \exp[j(\omega t - kz)]\}$$

Here, the *y*-component is in phase with the *x*-component, but has different magnitude.

Arbitrary-Angle Linear Polarization

$$E_x(z,t) = \hat{x} \operatorname{Re}\{\tilde{E}_o \cos(\phi) \exp[j(\omega t - kz)]\}$$
$$E_y(z,t) = \hat{y} \operatorname{Re}\{\tilde{E}_o \sin(\phi) \exp[j(\omega t - kz)]\}$$

Specifically:

0° linear (x) polarization: $E_y/E_x = 0$ 90° linear (y) polarization: $E_y/E_x = \infty$ 45° linear polarization: $E_y/E_x = 1$ Arbitrary linear polarization: $E_y/E_x = constant$

$$\frac{E_y(z,t)}{E_x(z,t)} = \frac{\sin(\phi)}{\cos(\phi)} = \tan(\phi)$$

$$\frac{Circular (or Helical) Polarization}{Polarization} \hat{y}$$

$$E_x(z,t) = \hat{x}\tilde{E}_o sin(\omega t - kz)$$

$$E_y(z,t) = \hat{y}\tilde{E}_o cos(\omega t - kz)$$
... or, more generally,
$$E_x(z,t) = \hat{x}Re\{-j\tilde{E}_o e^{j(\omega t - kz)}\}$$

$$E_y(z,t) = \hat{y}Re\{j\tilde{E}_o e^{j(\omega t - kz)}\}$$

The complex amplitude of the xcomponent is j times the complex amplitude of the y-component.

 E_x and E_y are always 90° out of phase \hat{z} The resulting E-field rotates counterclockwise around the propagation-vector (looking along *z*-axis).

If projected on a constant z plane the E-field vector would rotate clockwise !!!

<u>Right vs. Left Circular (or Helical) Polarization</u>

$$E_x(z,t) = -\hat{x}\tilde{E}_o sin(\omega t - kz)$$
$$E_y(z,t) = \hat{y}\tilde{E}_o cos(\omega t - kz)$$

... or, more generally,

$$E_x(z,t) = \hat{x}Re\{+j\tilde{E}_oe^{j(\omega t - kz)}\}$$
$$E_y(z,t) = \hat{y}Re\{j\tilde{E}_oe^{j(\omega t - kz)}\}$$

Here, the complex amplitude of the *x*-component is +j times the complex amplitude of the *y*-component.

So the components are always 90° out of phase, but in the other direction

The resulting E-field rotates clockwise around the propagation-vector (looking along *z-axis*).

If projected on a constant z plane the E-field vector would rotate **counterclockwise !!!**

<u>Unequal arbitrary-relative-phase components</u> <u>yield elliptical polarization</u>

$$E_x(z,t) = \hat{x}E_{ox}cos(\omega t - kz)$$
$$E_y(z,t) = \hat{y}E_{oy}cos(\omega t - kz - \theta)$$

where $E_{o_x} \neq E_{o_y}$

... or, more generally,

$$E_x(z,t) = \hat{x}Re\{E_{ox}e^{j(\omega t - kz)}\}$$

$$E_y(z,t) = \hat{y}Re\{E_{oy}e^{j(\omega t - kz - \theta)}\}$$

... where \tilde{E}_{o_x} and \tilde{E}_{o_y} are arbitrary complex amplitudes

The resulting E-field can rotate clockwise or counterclockwise around the k-vector (looking along k). Sinusoidal Uniform Plane Waves

 $\vec{E}_L = E_o\left(\hat{x} + \hat{y}e^{+j\pi/2}\right)e^{-jkz} \quad \vec{E}_R = E_o\left(\hat{x} + \hat{y}e^{-j\pi/2}\right)e^{-jkz}$

<u>A linearly polarized wave can be represented</u> as a sum of two circularly polarized waves

<u>A linearly polarized wave can be represented</u> <u>as a sum of two circularly polarized waves</u>

Polarizers for Linear and Circular Polarizations

What is the average power at the input and output?

Image is in the public domain.

vision

Anisotropic Material

 k_y $\omega_{o_y}^2$ mun k_x zm k_z m

The molecular "spring constant" can be different for different directions

If $\omega_{o_x} = \omega_{o_z}$, then the material has a single optics axis and is called uniaxial crystal

$$\frac{\text{Microscopic Lorentz Oscillator Model}}{P(\omega) = \frac{\epsilon_o \omega_p^2}{\omega_o^2 - \omega^2 + j\omega\gamma} E(\omega) = (\tilde{\epsilon}(\omega) - 1)\epsilon_o E(\omega)$$

 ω

Ordinary...

$$n_x = n_z \equiv n_o$$

Extraordinary...

$$n_y \equiv n_e$$

<u>Uniaxial Crystal</u>

Uniaxial crystals have one refractive index for light polarized along the optic axis (n_e)

and another for light polarized in either of the two directions perpendicular to it (n_o) .

Light polarized along the optic axis is called the extraordinary ray,

and light polarized perpendicular to it is called the ordinary ray.

These polarization directions are the crystal principal axes.

Birefringent Materials

Image by Arenamotanus http://www.farenamotanus/2756010517 on flick	e, 16/17 s 6978 Mobil flickr.com/photos/	o-ray n _o e-ray
Crystal $\lambda = 583nm$	n _o	n _e
Tourmaline	1.669	1.638
Calcite	1.6584	1.4864
Quartz	1.5443	1.5534
Sodium nitrate	1.5854	1.3369
Ice	1.309	1.313
Rutile (TiO ₂)	2.616	2.903

All transparent crystals with non-cubic lattice structure are birefringent.

Polarization of output wave is determined by...

$$\frac{E_y}{E_x} = \frac{e^{-jk_ed}}{e^{-jk_od}} = e^{-j(k_o-k_e)d}$$

If we are to make quarter-wave plate using calcite ($n_o = 1.6584$, $n_e = 1.4864$), for incident light wavelength of = 590 nm, how thick would the plate be ? $d_{\text{calcite QWP}} = (590 \text{nm}/4) / (n_o - n_e) = 858 \text{ nm}$

Half-Wave Plate

The phase difference between the waves linearly polarized parallel and perpendicular to the optic axis is a half cycle

Key Takeaways

EM Waves can be linearly, circularly, or elliptically polarized.

A circularly polarized wave can be represented as a sum of two linearly polarized waves having $\pi/2$ phase shift.

A linearly polarized wave can be represented as a sum of two circularly polarized waves.

In the general case, waves are elliptically polarized.

Waveplates can be made from birefringent materials:

Quarter wave plate: Half wave plate:

$$\begin{array}{ll} \lambda/4 = (n_o - n_e)d & (\text{gives } \pi/2 \text{ phase shift}) \\ \lambda/2 = (n_o - n_e)d & (\text{gives } \pi \text{ phase shift}) \end{array}$$

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.