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1 Introduction

In this short note we describe a method for calculating forces of electrical and magnetic origin. This
method, sometimes called ”The Principal of Virtual Work” (POVW) derives from the First Law of
Thermodynamics (conservation of energy), and should be fairly intuitive. The method succeeds in
many cases where other methods are difficult or unwieldy to use, but we can show (and do here)
that in some cases that are straightforward to work, the results of POVW are consistent with direct
calculation of force using fields and charges or the Lorentz Force Law.

Electromechanical energy converters such as motors, generators, loudspeakers, and so forth are
described conceptually in Figure 1. Electric power goes in one side (wires), the intended output
(mechanical power) goes out the other (in the case of a motor, this is the shaft), and then there
are attendant losses that must be accounted for. In electric motors those losses come out as heat
from resistive drops in the wires, as heat from friction and windage, as noise from vibration and
unintended torques and from turbulence in the air gap, and from other mechanisms that we won’t
deal with here.

The key to the POVW method for estimating forces is to isolate the force producing mechanisms,
identify the energy going into the electromagnetic fields and then identifying how that energy varies
with the mechanical variables such as position.

2 Force and Potential Energy

Consider the situation shown in Figure 2. Were we to lift a weight with mass M from a position
on the floor to some position above the floor of height x (with respect to the floor), we would have
to overcome the gravity force Fg = Mg, where g is called the ’acceleration due to gravity’, and
this amounts to about 9.812 Newtons per kilogram near the surface of the earth. To lift the mass

∗©c 2010 James L. Kirtley Jr.

1



Losses: Heat, Noise, Windage,...

Electromechanical
Converter

Mechanical Power OutElectric Power In

Figure 1: Conceptual Electromechanical Converter
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Figure 2: Force of Gravity on a Mass

we must do work on it, and this adds to its ’potential energy’: to go to height x we must give it
potential energy:

Ep = Mgx

The force of gravity, which we knew in the first place, is also seen to be the derivative of that
potential energy with respect to height:

∂Ep
Fg = −

∂x

The Principal of Virtual Work is almost that simple, once the variation in stored energy with
position can be identified.

3 Electric Field Systems

We start with an electroquasistatic system: one in which electric fields are dominant and in which
we can generally ignore magnetic fields. We know that, were we able to identify the electric fields
acting on all of the charges of this system we could use the fact that force on a charge is:

~F = ~qE

Simply adding up all of the forces on the individual charges should give us the total force
produced by the system. This may or may not be straightforward, and it is usually not.
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Figure 3: Conceptual Electric Field System

Figure 3 shows, conceptually, the kind of system we will be working with. The system has one
set of electrical terminals, characterized by voltage and current, and one set of mechanical terminals,
characterized by a force and a displacement. Note that in this picture, the force is imposed by the
electrical system on whatever it might be driving, while the electrical terminals show power flow
into the electric field system.

Power flow into the system is voltage times current:

dq
Pe = vi = v

dt

where q is charge stored in the system.
We can identify the mechanical flow of energy out of this system through the mechanical ter-

minals is force times velocity.
dx

Pm = feu = fe
dt

One caution we must state at this point is that all systems of the type we are dealing with will
have losses. Electrical losses will be incurred because dielectrics are ’leaky’, so some of that charge
will be lost by conduction. Similarly, there will be mechanical losses due to friction. However,
we can always identify the ’conservative’ part of the system, the lossless part, and we claim (you
should examine this claim carefully!) that it is the conservative part that makes the force of electric
origin, so that losses can be identified separately. Some reflection on this should reveal that the
notion of a ’conservative’ system is equivalent to the notion that there is a uniquely defined state of
the system determined by the two variables, in this case the charge q and the mechanical position
variable x. That is:

We = We(q, x)

If this stored energy is a function only of the state of the system, it is independent of how the
system got to that state. Once the electrical power input to the system and mechanical power
output from the system have been identified, it is possible to calculate the rate of change of energy
stored in the electric field system:

dWe dq x
= Pe Pm = v − f e d

−
dt dt dt

Then the change in energy between any two states of the system, call them a and b would be:

a dq dx a

We(a) − We(b) =

∫

v dt − fe dt =
b dt dt

∫

vdq − fedx
b
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Figure 4: Difference in Energy is Independent of Path Between Points

This is just like noting the change in energy stored by that weight in the gravity example is
Wg(a)−Wg(b) =

∫ a
b Mgdx. In the case of the electric field system, however, it is a two-dimensional,

or vector integral.
Note that if the energy stored in the electric field system is uniquely determined by the two

variables, charge and displacement (q and x), the rate of change of energy stored in the field is:

dW ∂W dq ∂W e
e e dx

= +
dt ∂q dt dx dt

Clearing the derivatives, we can find the total differential of energy stored:

dW e ∂We ∂We
= dq + dx

∂q ∂x

Comparing the two expressions for the differentials of energy, we must come to the conclusion
that:

∂We ∂We
v = fe = −

∂q ∂x

3.1 Simple example: Capacitor with Variable Spacing

As an example of this force determination, consider a capacitor consisting of two metal plates
separated by a variable spacing g, as shown in Figure 5. We know that the capacitance of this
thing is:

ǫ0WH
C =

g
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Figure 5: Force Between Capacitor Plates

So that the voltage can be expressed as a simple function of charge:

q qg
v = =

C ǫ0WH

To find energy stored in this thing, assume that the position x is fixed with no charge on the
plates, so that no work must be done to position it. Then when the charge is Q:

Q Q qg 1 Q2g
We =

∫

vdq =
0

∫

dq =
0 ǫ0WH 2 ǫ0WH

According to our analysis, the force acting on the gap is:

∂We 1 Q2

fe = − = −
∂x 2 ǫ0WH

This force can be seen to be trying to make the dimensional variable g smaller (negative force).
This could be made a bit more tractable by noting that total charge is, in terms of voltage V :

ǫ0WHV
Q = ǫ0WHEx =

g

And then the force is easily written in terms of voltage as:

1 ǫ0WHV 2

fe = −
2 g2

3.2 Reconciliation with charge times electric field

We should be able to show that the energy method gives the same answer as multiplying charge
times electric field.

The situation can be demonstrated by looking a bit more closely at the capacitor. It will help
to think about the units of charge. The charge on the capacitor plates (positive on the left, negtive
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Figure 6: Details of Capacitor Plates

on the right) is Q, which has units of Coulombs. If we can assume that this charge is distributed
uniformly over the plates, we would have a surface charge density, with units of Coulombs per
square meter:

Q
σs =

WH

Figure 6 shows a small section of the capacitor. We assume here that the plates are parallel to
each other. Since the plates are made of a metal, any electric field must be perpendicular to the
surface. If the horizontal direction in Figure 6 is noted as x, then the electric field in the gap must
be:

V σ~ s
E = x̂ = x̂

g ǫ0

Simply multiplying surface charge times electric field would yield an expression that is actually
twice the real force.

We know that the force on a single charge q is ~fe = ~qE, for which the units are Newtons.
Consequently the volume force on a charge density is ~F = ~ρE, for which the units are Newtons
per cubic meter. Our difficulty here is that the field ~E arises from the surface charge σs, and that
surface charge is a singularity. To resolve this we engage in what is not exactly a ruse, as shown
in Figure 7. In this picture, we assume that the charge is distributed over a volume, resolving the
singularity. That volume charge (units are Coulombs per cubic meter) is:

Q σs
ρ = =

δWH δ

Given this distribution of charge over a volume, we no longer have a singularity and it is
straightforward to estimate electric field as a continuous function of space. As shown in Figure 8,
looking at the charge and electric field about the left-hand plate, the field is zero at the metal
surface but rises over the assumed charge distribution:

σs
Ex(x) = x

ǫ0δ
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Figure 7: Charge distributed over a volume

Note that as the assumed dimension δ becomes smaller, the slope of field magnitude increases,
but the electric field in the gap (to the right of the charge is independent of the dimension δ.

Volume force density is

~F = ~ρE = x̂

(

σ 2
s

x
ǫ0δ

)

Total force is directly calculatee by integrating over the volume of the charge distribution:

δ σ 2

~ s σ2
sf = WH

∫

x̂

(

ǫ0δ

)

xdx = WH
0 2ǫ0

As we expect, the actual value assumed for the thickness of the current distribution is im-
material. The answer is also consistent with what we computed from the Principal of Virtual
Work.

4 Forces in Magnetic Field Systems

By ’Magnetic Field Systems’ we mean magnetoquasistatic systems, in which charges do not accu-
mulate and time variations of electric fields are not important sources of magnetic field. Consider
a magnetic field system with one electrical terminal pair and one mechanical terminal, as shown in
Figure 9.

As with the electric field system, all converters have loss mechanisms and so are not themselves
conservative. However, the magnetic field system that produces force is, in principle, conservative
in the sense that its state and stored energy can be described by only two variables. The ’history’
of the system, meaning the path by which it was put into its current state is not important.
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Figure 9: Conceptual Magnetic Field System

It is possible to chose the variables in such a way that electrical power into this conservative
system is:

dλ
Pe = vi = i

dt

Similarly, mechanical power out of the system is:

dx
Pm = fe

dt

The difference between these two is the rate of change of energy stored in the system:

dWm
= P −e Pm

dt

It is then possible to compute the change in energy required to take the system from one state to
another by:

a

Wm(a) − Wm(b) =

∫

idλ − fedx
b

where the two states of the system are described by a = (λa, xa) and b = (λb, xb)
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If the energy stored in the system is described by two state variables, λ and x, the total

differential of stored energy is:
∂Wm ∂Wm

dWm = dλ + dx
∂λ ∂x

and it is also:
dWm = idλ − f edx

So that we can make a direct equivalence between the derivatives and:

f e ∂Wm
= −

∂x

This generalizes in the case of multiple electrical terminals and/or multiple mechanical termi-
nals. For example, a situation with multiple electrical terminals will have:

dWm =
∑

i −kdλk fedx
k

And the case of rotary, as opposed to linear, motion has in place of force fe and displacement
x, torque Te and angular displacement θ.

In many cases we might consider a system which is electricaly linear, in which case inductance
is a function only of the mechanical position x.

λ(x) = L(x)i

In this case, assuming that the energy integral is carried out from λ = 0 (so that the part of the
integral carried out over x is zero),

Wm =

∫ λ 1 1 λ2

λdλ =
0 L(x) 2 L(x)

This makes
1

f = 2
∂ 1

−e λ
2 ∂x L(x)

Note that this is numerically equivalent to

1
fe = i2

∂
L(x)

2 ∂x

This is true only in the case of a linear system. Note that substituting L(x)i = λ too early in the
derivation produces erroneous results: in the case of a linear system it produces a sign error, but
in the case of a nonlinear system it is just wrong.

4.1 Example: Junkyard Magnet

This is a practical application of the POVW as applied to magnetic field systems, and the example
itself is a practical example of a magnetic actuator. You may have seen one of these things picking
up cars in junkyards.

A cartoon view of the device is shown in Figure 10. The shaded volumes are highly permeable
material (µ → ∞). They are uniform in shape in the direction perpendicular to the view with
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Figure 10: Cartoon of a junkyard magnet

dimension D. Wrapped arount the upper body is a coil with N turns. That coil is driven with
a DC (constant) current of magnitude I. To find flux, consider Ampere’s Law around the loop
indicated as a dotted line.

∮

~H · ~dℓ = NI

If magnetic field ~H is taken to be down in the right-hand gap and up in the left hand gap, and
if the gap dimension g is relatively small so the field is uniform over the gap area, and since there
is no magnetic field ~H in the magnetic material the field in the gap is:

NI
Hg =

2g

Note that, since magnetic flux has no divergence, the flux leaving the right-hand pole of the
upper magnetic body must be matched by flux entering that body in the left-hand pole. Total flux
is flux density times area:

NI
Φ = µ0WD

2g

and since flux linked by the coil is just NΦ, the inductance of the system is:

N2WD
Lg(g) = µ0

2g

Magnetic stored energy is:

Wm =

∫ λ0 λ 1 λ2

dλ = 0

0 Lg(g) 2 Lg(g)
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Force acting between the two elements would then be:

λ2 1 µ 2
0

∂ 0I
2N WD

fe = − = −
2 ∂g Lg(g) 2g2

The expression for force is negative as it is in the direction of making the gap smaller.
It should be clear that viewing this problem as linear leads to major limitations: the force cannot,

as suggested by this expression, go to infinity as g → 0. Note that it is possible to express the lifting
force in terms of the magnetic flux density in the air-gaps: See that, since λ0 = NΦ = NWDBg,
lift force can be written as:

B2
g

fe = 2WD
2µ0

As it turns out, this is an accurate description of the lift force, this time in terms of the magnetic
field in the gap. If the gap is small enough or the excitation current is large enough, the magnetic
material will exhibit saturation and the flux density will approach a constant value (in common
steels, te saturation flux density is about 1.8 T).

4.2 Example: Linear Actuator

This example is related to common ’solenoid actuators’ that are widely used in relays, motor
starters, circuit breakers and the like. The actual form of such actuators is not quite what is shown
in Figure 11, but the analysis is nearly the same. A flat bar of highly permeable (ferromagnetic)
material can slide into a gap in a ferromagnetic core. The permeability of both the bar and the
core is large enough that we do not need to consider it (µ → ∞).

W
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Figure 11: Cartoon of a linear actuator

The inductance of this device is:

W − x x 1 1 w
L(x) = µ0N

2D

(

+
g g − h

)

= µ0N
2D

(

x

(

−
g − h g

)

+
g

)

Magnetic Stored Energy is
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λ
W

∫ λ0 λ 1 2

m = dλ = 0

0 L(x) 2 L(x)

Force developed is then:

∂Wm 1 ∂ 1 λ 2
0 ∂L )

f 2
1 (x

− −e = = λ =
∂x 2 0 ∂x L(x) 2

(

L(x)

)

∂x

If the system is driven by a current I, this has a simple form:

I2 ∂L(x)
2 2

(

1 1
fe = = µ0N DI −

2 ∂x g − h g

)

4.3 Example: Railgun

This seemingly exotic device has practical applications, not only as a weapon but also for some
types of materials testing. It has an advantage over gas powered guns (the conventional type that
derive the gas from an explosive charge) that means it can drive very high speed projectiles. We
introduce it here because it allows us to show a few important concepts.

Depth D
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x u
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w

Figure 12: Cartoon of a Rail Gun

A cartoon of the basic rail gun is shown in Figure 12. It consists of two flat ’rails’ that are
parallel to each other and separated by the distance w, driven at one end by a distributed source of
current. The system has depth D in the direction you cannot see. Allowed to slide in the horizontal
direction is the projectile, which makes good electrical contact with the two rails.

It is a common assumption that magnetic field is important only within the region between
the two rails. This will be close to being right if D >> w or if the magnetic flux is returned by
a ferromagnetic barrel (not shown in this cartoon). However, this assumption means that we may
estimate the magnetic field in the region to the left of the projectile to be:

I0
Hz = −

D

Flux to the left of the projectile is Φ = µ I0
0 wx, and because this is inherently a one-turn

D

inductor, we can estimate the inductance that is a function of projectile position:

wx
L(x) = µ0

D
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From the derivation of force, recognizing this thing is linear,

1 1
fe = I2

∂L(x) w
0

= µ0I
2

2 ∂x 2 0 D

The advantage over a gas gun should be clear by now: The force on the projectile depends on
the square of current. In a gas gun the pressure behind the projectile falls rapidly as the volume
behind the projectile increases.

Note that this description was incomplete in an inconsequential way: in calculating inductance
we included only the region behind (to the left in this picture) of the projectile. The projectile itself
has some dimension and there will be some energy stored and so inductance associated with the
projectile itself. However, that inductance does not change with projectile position and so does not
affect action of the railgun. That dimension does, however, allow us to compare the force derived
by the energy (POVW) method with the Lorentz Force Law. Look at Figure 13.
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Figure 13: Cartoon of a Rail Gun

In this derivation, assume that the coordinate system to be used has x̂ to the right (so that the
position of the left-hand edge of the projectile is at x, the ŷ direction is up and then the ẑ direction
is out of the paper. It is reasonable to assume that current in the projectile block will be uniform,
and if so it is:

I~ 0
J = −ŷ

aD

The flux density in the region of the block must have the form shown in the figure, since the
curl of H is current density:

∇× ~H = ~J

or, in this case,

∂Hz
= −Jy

∂x

Force on the block is determined from F = ~J × ~B and total force is the integral of that over the
volume of the block. It is straightforward to see that, if the current is uniform and the consequent
flux density has a triangular form as shown,
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1 1 I0 I0 1 w
fe = x̂ µ0JyBz = x̂ µ0 wDa = µ 2

0I
2 2 aD D 2 0 D

As with the electric field force example we started with, the dimension of the projectile, a is
inconsequential.
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