
C H A P T E R 4 

State-Space Models 

4.1 INTRODUCTION 

In our discussion of system descriptions up to this point, we have emphasized 
and utilized system models that represent the transformation of input signals into 
output signals. In the case of linear and time-invariant (LTI) models, our focus 
has been on the impulse response, frequency response and transfer function. Such 
input-output models do not directly consider the internal behavior of the systems 
they model. 

In this chapter we begin a discussion of system models that considers the internal 
dynamical behavior of the system as well as the input-output characteristics. Inter
nal behavior can be important for a variety of reasons. For example, in examining 
issues of stability, a system can be stable from an input-output perspective but 
hidden internal variables may be unstable, yielding what we would want to think 
of as unstable system behavior. 

We introduce in this chapter an important model description that highlights internal 
behavior of the system and is specially suited to representing causal systems for real-
time applications such as control. Specifically, we introduce state-space models for 
finite-memory (or lumped) causal systems. These models exist for both continuous-
time (CT) and discrete-time (DT) systems, and for nonlinear, time-varying systems 
— although our focus will be on the LTI case. 

Having a state-space model for a causal DT system (similar considerations apply 
in the CT case) allows us to answer a question that gets asked about such systems 
in many settings: Given the input value x[n] at some arbitrary time n, how much 
information do we really need about past inputs, i.e., about x[k] for k < n, in 
order to determine the present output y[n] ? As the system is causal, we know that 
having all past x[k] (in addition to x[n]) will suffice, but do we actually need this 
much information? This question addresses the issue of memory in the system, and 
is a worthwhile question for a variety of reasons. 

For example, the answer gives us an idea of the complexity, or number of degrees of 
freedom, associated with the dynamic behavior of the system. The more informa
tion we need about past inputs in order to determine the present output, the richer 
the variety of possible output behaviors, i.e., the more ways we can be surprised in 
the absence of information about the past. 

Furthermore, in a control application, the answer to the above question suggests 
the required degree of complexity of the controller, because the controller has to 
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FIGURE 4.1 RLC circuit. 

remember enough about the past to determine the effects of present control actions 
on the response of the system. In addition, for a computer algorithm that acts 
causally on a data stream, the answer to the above question suggests how much 
memory will be needed to run the algorithm. 

With a state-space description, everything about the past that is relevant to the 
present and future is summarized in the present state, i.e., in the present values of 
a set of state variables. The number of state variables, which we refer to as the 
order of the model, thus indicates the amount of memory or degree of complexity 
associated with the system or model. 

4.2 INPUT-OUTPUT AND INTERNAL DESCRIPTIONS 

As a prelude to developing the general form of a state-space model for an LTI 
system, we present two examples, one in CT and the other in DT. 

4.2.1 An RLC circuit 

Consider the RLC circuit shown in Figure 4.1. We have labeled all the component 
voltages and currents in the figure. 

The defining equations for the components are: 

diL(t)
L = vL(t)

dt

dvC (t)


C = iC (t)
dt 

vR1(t) = R1iR1(t) 

vR2(t) = R2iR2(t) , (4.1) 
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Section 4.2 Input-output and internal descriptions 67 

while the voltage source is defined by the condition that its voltage is v(t) regardless 
of its current i(t). Kirchhoff’s voltage and current laws yield 

v(t) = vL(t) + vR2(t) 

vR2(t) = vR1(t) + vC (t) 

i(t) = iL(t) 

iL(t) = iR1(t) + iR2(t) 

iR1(t) = iC (t) . (4.2) 

All these equations together constitute a detailed and explicit representation of the 
circuit. 

Let us take the voltage source v(t) as the input to the circuit; we shall also denote 
this by x(t), our standard symbol for inputs. Choose any of the circuit voltages 
or currents as the output — let us choose vR2 (t) for this example, and also denote 
it by y(t), our standard symbol for outputs. We can then combine (4.1) and (4.2) 
using, for example, Laplace transforms, in order to obtain a transfer function or 
a linear constant-coefficient differential equation relating the input and output. 
The coefficients in the transfer function or differential equation will, of course be 
functions of the values of the components in the circuit. The resulting transfer 
function H(s) from input to output is 

( 
R1 1 

) 

Y (s) α L s + LC 
H(s) = 

X(s)
= ( 

1 R1 

)
1 

(4.3) 
s2 + α + s + αR2C L LC 

where α denotes the ratio R2/(R1 + R2). The corresponding input-output differ
ential equation is 

d2y(t) ( 1 R1 
) dy(t) ( 1 ) ( R1 

) dx(t) ( 1 )
+α + +α y(t) = α + α x(t) . (4.4) 

dt2 R2C L dt LC L dt LC 

An important characteristic of a circuit such as in Figure 4.1 is that the behavior 
for a time interval beginning at some t is completely determined by the input 
trajectory in that interval as well as the inductor currents and capacitor voltages 
at time t. Thus, for the specific circuit in Figure 4.1, in determining the response 
for times ≥ t, the relevant past history of the system is summarized in iL(t) and 
vC (t). The inductor currents and capacitor voltages in such a circuit at any time 
t are commonly referred to as state variables, and the particular set of values they 
take constitutes the state of the system at time t. This state, together with the 
input from t onwards, are sufficient to completely determine the response at and 
beyond t. 

The concept of state for dynamical systems is an extremely powerful one. For the 
RLC circuit of Figure 4.1 it motivates us to reduce the full set of equations (4.1) and 
(4.2) into a set of equations involving just the input, output, and internal variables 
iL(t) and vC (t). Specifically, a description of the desired form can be found by 
appropriately eliminating the other variables from (4.1) and (4.2), although some 
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68 Chapter 4 State-Space Models 

attention is required in order to carry out the elimination efficiently. With this, 
we arrive at a condensed description, written here using matrix notation, and in a 
format that we shall encounter frequently in this chapter and the next two: 
(	

diL(t)/dt 
) ( 

−αR1/L −α/L 
) ( 

iL(t) 
) ( 

1/L 
) 

dvC (t)/dt 
= 

α/C −1/(R1 + R2)C vC (t)
+ 

0 
v(t) . 

(4.5) 

The use of matrix notation is a convenience; we could of course have simply written 
the above description as two separate but coupled first-order differential equations 
with constant coefficients. 

We shall come to appreciate the properties and advantages of a description in the 
form of (4.5), referred to as a CT (and, in this case, LTI) state-space form. Its key 
feature is that it expresses the rates of change of the state variables at any time t 
as functions (in this case, LTI functions) of their values and those of the input at 
that same time t. 

As we shall see later, the state-space description can be used to solve for the state 
variables iL(t) and vC (t), given the input v(t) and appropriate auxiliary information 
(specifically, initial conditions on the state variables). Furthermore, knowledge of 
iL(t), vC (t) and v(t) suffices to reconstruct all the other voltages and currents in 
the circuit at time t. In particular, any output variable can be written in terms of 
the retained variables. For instance, if the output of interest for this circuit is the 
voltage vR2(t) across R2, we can write (again in matrix notation) 

vR2(t) = 
( 

αR1 α 
) ( 

iL(t) 
) 

+ ( 0 ) v(t) . (4.6) 
vC (t) 

For this particular example, the output does not involve the input v(t) directly — 
hence the term ( 0 ) v(t) in the above output equation — but in the general case 
the output equation will involve present values of any inputs in addition to present 
values of the state variables. 

4.2.2 A delay-adder-gain system 

For DT systems, the role of state variables is similar to the role discussed in the 
preceding subsection for CT systems. We illustrate this with the system described 
by the delay-adder-gain block diagram shown in Figure 4.2.2. The corresponding 
detailed equations relating the indicated signals are 

q1[n + 1] = q2[n] 

q2[n + 1] = p[n] 

p[n] = x[n] − (1/2)q1[n] + (3/2)q2[n] 

y[n] = q2[n] + p[n] . (4.7) 

The equations in (4.7) can be combined together using, for example, z-transform 
methods, to obtain the transfer function or linear constant-coefficient difference 
equation relating input and output: 
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FIGURE 4.2 Delay-adder-gain block diagram. 

Y (z) 1 + z−1 

H(z) = = (4.8) 
X(z) 1 − 32 z

−1 + 12 z
−2 

and 
3 1 
y[n − 1] + y[n − 2] = x[n] + x[n − 1] . (4.9) y[n] − 

2 2 

The response of the system in an interval of time ≥ n is completely determined by 
the input for times ≥ n and the values q1[n] and q2[n] that are stored at the outputs 
of the delay elements at time n. Thus, as with the energy storage elements in the 
circuit of Figure 4.1, the delay elements in the delay-adder-gain system capture the 
state of the system at any time, i.e., summarize all the past history with respect 
to how it affects the present and future response of the system. Consequently, we 
condense (4.7) in terms of only the input, output and state variables to obtain the 
following matrix equations: 

( 
q1[n + 1] 

) ( 
0 1 

)( 
q1[n] 

) ( 
0 

) 

q2[n + 1] 
= −1/2 3/2 q2[n]

+
1 

x[n] (4.10) 

( 
q1[n] 

) 

y[n] = ( −1/2 5/2 ) 
q2[n] 

+ (1)x[n] . (4.11) 

In this case it is quite easy to see that, if we are given the values q1[n] and q2[n] of 
the state variables at some time n, and also the input trajectory from n onwards, 
i.e., x[n] for times ≥ n, then we can compute the values of the state variables for 
all times > n, and the output for all times ≥ n. All that is needed is to iteratively 
apply (4.10) to find q1[n + 1] and q2[n + 1], then q1[n + 2] and q2[n + 2], and so on 
for increasing time arguments, and to use (4.11) at each time to find the output. 
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70 Chapter 4 State-Space Models 

4.3 STATE-SPACE MODELS 

As illustrated in Sections 4.2.1 and 4.2.2, it is often natural and convenient, when 
studying or modeling physical systems, to focus not just on the input and output 
signals but rather to describe the interaction and time-evolution of several key vari
ables or signals that are associated with the various component processes internal 
to the system. Assembling the descriptions of these components and their intercon
nections leads to a description that is richer than an input–output description. In 
particular, in Sections 4.2.1 and 4.2.2 the description is in terms of the time evolu
tion of variables referred to as the state variables, which completely capture at any 
time the past history of the system as it affects the present and future response. 
We turn now to a more formal definition of state-space models in the DT and CT 
cases, followed by a discussion of two defining characteristics of such models. 

4.3.1 DT State-Space Models 

A state-space model is built around a set of state variables; the number of state 
variables in a model or system is referred to as its order. Although we shall later 
cite examples of distributed or infinite-order systems, we shall only deal with state-
space models of finite order, which are also referred to as lumped systems. For an 
Lth-order model in the DT case, we shall generically denote the values of the L 
state variables at time n by q1[n], q2[n], , qL[n]. It is convenient to gather these · · · 
variables into a state vector:


 
q1[n] 




 

q[n] = 

q2

.
[n] 

. (4.12) 
. 

 .  

qL[n] 

The value of this vector constitutes the state of the model or system at time n. 

A DT LTI state-space model with single (i.e., scalar) input x[n] and single output 
y[n] takes the following form, written in compact matrix notation: 

q[n + 1] = Aq[n] + bx[n] , (4.13) 

y[n] = c T q[n] + dx[n] . (4.14) 

In (4.13), A is an L × L matrix, b is an L × 1 matrix or column-vector, and cT is 
a 1 × L matrix or row-vector, with the superscript T denoting transposition of the 
column vector c into the desired row vector. The quantity d is a 1 × 1 matrix, i.e., 
a scalar. The entries of all these matrices in the case of an LTI model are numbers 
or constants or parameters, so they do not vary with n. Note that the model we 
arrived at in (4.10) and (4.11) of Section 4.2.2 has precisely the above form. We 
refer to (4.13) as the state evolution equation, and to (4.14) as the output equation. 
These equations respectively express the next state and the current output at any 
time as an LTI combination of the current state variables and current input. 

Generalizations of the DT LTI State-Space Model. There are various nat
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Section 4.3 State-Space Models 71 

ural generalizations of the above DT LTI single-input, single-output state-space 
model. A multi-input DT LTI state-space model replaces the single term bx[n] in 
(4.13) by a sum of terms, b1x1[n] + + bM xM [n], where M is the number of · · · 
inputs. This corresponds to replacing the scalar input x[n] by an M -component 
vector x[n] of inputs, with a corresponding change of b to a matrix B of dimension 
L × M . Similarly, for a multi-output DT LTI state-space model, the single output 
equation (4.14) is replaced by a collection of such output equations, one for each of 
the P outputs. Equivalently, the scalar output y[n] is replaced by a P -component 
vector y[n] of outputs, with a corresponding change of cT and d to matrices CT 

and D of dimension P × L and P × M respectively. 

A linear but time-varying DT state-space model takes the same form as in (4.13) 
and (4.14) above, except that some or all of the matrix entries are time-varying. A 
linear but periodically varying model is a special case of this, with matrix entries 
that all vary periodically with a common period. A nonlinear, time-invariant model 
expresses q[n + 1] and y[n] as nonlinear but time-invariant functions of q[n] and 
x[n], rather than as the LTI functions embodied by the matrix expressions on the 
right-hand-sides of (4.13) and (4.14). A nonlinear, time-varying model expresses 
q[n + 1] and y[n] as nonlinear, time-varying functions of q[n] and x[n], and one can 
also define nonlinear, periodically varying models as a particular case in which the 
time-variations are periodic with a common period. 

4.3.2 CT State-Space Models 

Continuous-time state-space descriptions take a very similar form to the DT case. 
We denote the state variables as qi(t), i = 1, 2, ..., L, and the state vector as 

 
q1(t) 

 

 
q(t) = 

q2

.
(t) 

. (4.15) 
. 

 .  

qL(t) 

Whereas in the DT case the state evolution equation expresses the state vector at 
the next time step in terms of the current state vector and input values, in CT 
the state evolution equation expresses the rates of change (i.e., derivatives) of each 
of the state variables as functions of the present state and inputs. The general 
Lth-order CT LTI state-space representation thus takes the form 

dq(t) 
= q̇(t) = Aq(t) + bx(t) , (4.16) 

dt 
y(t) = c T q(t) + dx(t) , (4.17) 

where dq(t)/dt = q̇(t) denotes the vector whose entries are the derivatives, dqi(t)/dt, 
of the corresponding entries, qi(t), of q(t). Note that the model in (4.5) and (4.6) 
of Section 4.2.1 is precisely of the above form. 
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72 Chapter 4 State-Space Models 

Generalizations to multi-input and multi-output models, and to linear and nonlinear 
time-varying or periodic models, can be described just as in the case of DT systems, 
by appropriately relaxing the restrictions on the form of the right-hand sides of 
(4.16), (4.17). We shall see an example of a nonlinear time-invariant state-space 
model in Section 1. 

4.3.3 Characteristics of State-Space Models 

The designations of “state” for q[n] or q(t), and of “state-space description” for 
(4.13), (4.14) and (4.16), (4.17) — or for the various generalizations of these equa
tions — follow from the following two key properties of such models. 

State Evolution Property: The state at any initial time, along with the inputs 
over any interval from that initial time onwards, determine the state over that 
entire interval. Everything about the past that is relevant to the future state 
is embodied in the present state. 

Instantaneous Output Property: The outputs at any instant can be written in 
terms of the state and inputs at that same instant. 

The state evolution property is what makes state-space models particularly well 
suited to describing causal systems. In the DT case, the validity of this state 
evolution property is evident from the state evolution equation (4.13), which allows 
us to update q[n] iteratively, going from time n to time n + 1 using only knowledge 
of the present state and input. The same argument can also be applied to the 
generalizations of DT LTI models that we outlined earlier. 

The state evolution property should seem intuitively reasonable in the CT case as 
well. Specifically, knowledge of both the state and the rate of change of the state at 
any instant allows us to compute the state after a small increment in time. Taking 
this small step forward, we can re-evaluate the rate of change of the state, and 
step forward again. A more detailed proof of this property in the general nonlin
ear and/or time-varying CT case essentially proceeds this way, and is treated in 
texts that deal with the existence and uniqueness of solutions of differential equa
tions. These more careful treatments also make clear what additional conditions 
are needed for the state evolution property to hold in the general case. However, 
the CT LTI case is much simpler, and we shall demonstrate the state evolution 
property for this class of state-space models in the next chapter, when we show 
how to explicitly solve for the behavior of such systems. 

The instantaneous output property is immediately evident from the output equa
tions (4.14), (4.17). It also holds for the various generalizations of basic single-input, 
single-output LTI models that we listed earlier. 

The two properties above may be considered the defining characteristics of a state-
space model. In effect, what we do in setting up a state-space model is to introduce 
the additional vector of state variables q[n] or q(t), to supplement the input vari
ables x[n] or x(t) and output variables y[n] or y(t). This supplementation is done 
precisely in order to obtain a description that satisfies the two properties above. 
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Often there are natural choices of state variables suggested directly by the particular 
context or application. In both DT and CT cases, state variables are related to the 
“memory” of the system. In many physical situations involving CT models, the 
state variables are associated with energy storage, because this is what is carried 
over from the past to the future. Natural state variables for electrical circuits are 
thus the inductor currents and capacitor voltages, as turned out to be the case in 
Section 4.2.1. For mechanical systems, natural state variables are the positions and 
velocities of all the masses in the system (corresponding respectively to potential 
energy and kinetic energy variables), as we will see in later examples. In the case of 
a CT integrator-adder-gain block diagram, the natural state variables are associated 
with the outputs of the integrators, just as in the DT case the natural state variables 
of a delay-adder-gain model are the outputs of the delay elements, as was the case 
in the example of Section 4.2.2. 

In any of the above contexts, one can choose any alternative set of state variables 
that together contain exactly the same information. There are also situations in 
which there is no particularly natural or compelling choice of state variables, but 
in which it is still possible to define supplementary variables that enable a valid 
state-space description to be obtained. 

Our discussion of the two key properties above — and particularly of the role of 
the state vector in separating past and future — suggests that state-space models 
are particularly suited to describing causal systems. In fact, state-space models are 
almost never used to describe non-causal systems. We shall always assume here, 
when dealing with state-space models, that they represent causal systems. Al
though causality is not a central issue in analyzing many aspects of communication 
or signal processing systems, particularly in non-real-time contexts, it is generally 
central to simulation and control design for dynamic systems. It is accordingly in 
such dynamics and control settings that state-space descriptions find their greatest 
value and use. 

4.4	 EQUILIBRIA AND LINEARIZATION OF 
NONLINEAR STATE-SPACE MODELS 

An LTI state-space model most commonly arises as an approximate description of 
the local (or “small-signal”) behavior of a nonlinear time-invariant model, for small 
deviations of its state variables and inputs from a set of constant equilibrium values. 
In this section we present the conditions that define equilibrium, and describe the 
role of linearization in obtaining the small-signal model at this equilibrium. 
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74 Chapter 4 State-Space Models 

4.4.1 Equilibrium 

To make things concrete, consider a DT 3rd-order nonlinear time-invariant state-
space system, of the form 

q1[n + 1] = f1 q1[n], q2[n], q3[n], x[n]

q2[n + 1] = f2 q1[n], q2[n], q3[n], x[n]

q3[n + 1] = f3 q1[n], q2[n], q3[n], x[n] , (4.18) 

with the output y[n] defined by the equation 

y[n] = g q1[n], q2[n], q3[n], x[n] . (4.19) 

The state evolution functions fi( ), for i = 1, 2, 3, and the output function g( )· · 
are all time-invariant nonlinear functions of the three state variables qi[n] and the 
input x[n]. (Time-invariance of the functions simply means that they combine their 
arguments in the same way, regardless of the time index n.) The generalization to 
an Lth-order description should be clear. In vector notation, we can simply write 

q[n + 1] = f q[n], x[n] , y[n] = g q[n], x[n] , (4.20) 

where for our 3rd-order case 
 

f1( ) 
 

· 
f( ) =  f2( )  . (4.21) · · 

f3( )· 

Suppose now that the input x[n] is constant at the value x for all n. The corre
sponding state equilibrium is a state value q with the property that if q[n] = q 
with x[n] = x, then q[n + 1] = q. Equivalently, the point q in the state space is an 
equilibrium (or equilibrium point) if, with x[n] ≡ x for all n and with the system 
initialized at q, the system subsequently remains fixed at q. From (4.20), this is 
equivalent to requiring 

q = f(q, x) . (4.22) 

The corresponding equilibrium output is 

y = g(q, x) . (4.23) 

In defining an equilibrium, no consideration is given to what the system behavior 
is in the vicinity of the equilibrium point, i.e., of how the system will behave if 
initialized close to — rather than exactly at — the point q. That issue is picked 
up when one discusses local behavior, and in particular local stability, around the 
equilibrium. 
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In the 3rd-order case above, and given x, we would find the equilibrium by solving 
the following system of three simultaneous nonlinear equations in three unknowns: 

q1 = f1(q1, q2, q3, x) 

q2 = f2(q1, q2, q3, x) 

q3 = f3(q1, q2, q3, x) . (4.24) 

There is no guarantee in general that an equilibrium exists for the specified constant 
input x, and there is no guarantee of a unique equilibrium when an equilibrium does 
exist. 

We can apply the same idea to CT nonlinear time-invariant state-space systems. 
Again consider the concrete case of a 3rd-order system: 

q̇1(t) = f1 q1(t), q2(t), q3(t), x(t)

q̇2(t) = f1 q1(t), q2(t), q3(t), x(t)

q̇3(t) = f1 q1(t), q2(t), q3(t), x(t) , (4.25) 

with 
y(t) = g q1(t), q2(t), q3(t), x(t) , (4.26) 

or in vector notation, 

q̇(t) = f q(t), x(t) , y(t) = g q(t), x(t) . (4.27) 

Define the equilibrium q again as a state value that the system does not move from 
when initialized there, and when the input is fixed at x(t) = x. In the CT case, 
what this requires is that the rate of change of the state, namely q̇(t), is zero at 
the equilibrium, which yields the condition 

0 = f(q, x) . (4.28) 

For the 3rd-order case, this condition takes the form 

0 = f1(q1, q2, q3, x) 

0 = f2(q1, q2, q3, x) 

0 = f3(q1, q2, q3, x) , (4.29) 

which is again a set of three simultaneous nonlinear equations in three unknowns, 
with possibly no solution for a specified x, or one solution, or many. 

4.4.2 Linearization 

We now examine system behavior in the vicinity of an equilibrium. Consider once 
more the 3rd-order DT nonlinear system (4.18), and suppose that instead of x[n] ≡ 
x, we have x[n] perturbed or deviating from this by a value x̃[n], so 

x̃[n] = x[n] − x . (4.30) 
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The state variables will correspondingly be perturbed from their respective equi
librium values by amounts denoted by 

q̃i[n] = qi[n] − qi (4.31) 

for i = 1, 2, 3 (or more generally i = 1, , L), and the output will be perturbed by · · · 

ỹ[n] = y[n] − y . (4.32) 

Our objective is to find a model that describes the behavior of these various per
turbations from equilibrium. 

The key to finding a tractable description of the perturbations or deviations from 
equilibrium is to assume they are small, thereby permitting the use of truncated 
Taylor series to provide good approximations to the various nonlinear functions. 
Truncating the Taylor series to first order, i.e., to terms that are linear in the 
deviations, is referred to as linearization, and produces LTI state-space models in 
our setting. 

To linearize the original DT 3rd-order nonlinear model (4.18), we rewrite the vari
ables appearing in that model in terms of the perturbations, using the quantities 
defined in (4.30), (4.31), and then expand in Taylor series to first order around the 
equilibrium values: 

qi + q̃i[n + 1] = fi q1 + q̃1[n], q2 + q̃2[n], q3 + q̃3[n], x + x̃[n] for i = 1, 2, 4 

∂fi ∂fi ∂fi ∂fi ≈ fi(q1, q2, q3, x) + 
∂q1 

q̃1[n] + 
∂q2 

q̃2[n] + 
∂q3 

q̃3[n] + 
∂x 

x̃[n] . 

(4.33) 

All the partial derivatives above are evaluated at the equilibrium values, and are 
therefore constants, not dependent on the time index n. (Also note that the partial 
derivatives above are with respect to the continuously variable state and input 
arguments; there are no “derivatives” taken with respect to n, the discretely varying 
time index!) The definition of the equilibrium values in (4.24) shows that the term 
qi on the left of the above set of expressions exactly equals the term fi(q1, q2, q3, x) 
on the right, so what remains is the approximate relation 

∂fi ∂fi ∂fi ∂fi 
q̃i[n + 1] ≈ 

∂q1 
q̃1[n] + 

∂q2 
q̃2[n] + 

∂q3 
q̃3[n] + 

∂x 
x̃[n] (4.34) 

for i = 1, 2, 3. Replacing the approximate equality sign (≈) by the equality sign (=) 
in this set of expressions produces what is termed the linearized model at the equi
librium point. This linearized model approximately describes small perturbations 
away from the equilibrium point. 

We may write the linearized model in matrix form: 

∂f1 ∂f1 ∂f1
 
q1[n + 1] 

  
∂q1 ∂q2 ∂q3 q1[n] ∂x


   ∂f1 


˜
∂f2 ∂f2 ∂f2 q

˜
2[n] + ∂f2q2[n + 1] =˜  

∂f3 ∂f3 ∂f3 

 ˜
∂f3 

x̃[n] . (4.35)   
∂q1 ∂q2 ∂q3 

   
∂x 




q3[n + 1] 
∂q1 ∂q2 ∂q3 

q̃3[n]

∂x ︸ ︷︷ ︸ ︸ ︷︷ ︸︸ 

q[n

︷︷ 
+1] 

︸ ︸ ︷︷ ︸
q̃[n] b˜ A 
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We have therefore arrived at a standard DT LTI state-space description of the 
state evolution of our linearized model, with state and input variables that are 
the respective deviations from equilibrium of the underlying nonlinear model. The 
corresponding output equation is derived similarly, and takes the form 

[ 
∂g ∂g ∂g 

] 
q[n] + 

∂g 
y[n] = ∂q1 ∂q2 ∂q3 

˜
∂x 

x̃[n] . (4.36) 
︸ ︷︷ ︸ ︸︷︷︸

cT d 

The matrix of partial derivatives denoted by A in (4.35) is also called a Jacobian 
matrix, and denoted in matrix-vector notation by 

[ ∂f ]
A = .	 (4.37) 

∂q q,x 

The entry in its ith row and jth column is the partial derivative ∂fi( )/∂qj , eval· 
uated at the equilibrium values of the state and input variables. Similarly, 

[ ∂f ] 
T 

[ ∂g ] [ ∂g ]
b = , c = , d = . (4.38) 

∂x q,x ∂q q,x ∂x q,x 

The derivation of linearized state-space models in CT follows exactly the same 
route, except that the CT equilibrium condition is specified by the condition (4.28) 
rather than (4.22). 

EXAMPLE 4.1 A Hoop-and-Beam System 

As an example to illustrate the determination of equilibria and linearizations, we 
consider in this section a nonlinear state-space model for a particular hoop-and
beam system. 

The system in Figure 4.3 comprises a beam pivoted at its midpoint, with a hoop 
that is constrained to maintain contact with the beam but free to roll along it, 
without slipping. A torque can be applied to the beam, and acts as the control 
input. Our eventual objective might be to vary the torque in order to bring the 
hoop to — and maintain it at — a desired position on the beam. We assume that 
the only measured output that is available for feedback to the controller is the 
position of the hoop along the beam. 

Natural state variables for such a mechanical system are the position and velocity 
variables associated with each of its degrees of freedom, namely: 

•	 the position q1(t) of the point of contact of the hoop relative to the center of 
the beam; 

•	 the angular position q2(t) of the beam relative to horizontal; 

•	 the translational velocity q3(t) = q̇1(t) of the hoop along the beam; 

•	 the angular velocity q4(t) = q̇2(t) of the beam. 
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78 Chapter 4 State-Space Models 

FIGURE 4.3 A hoop rolling on a beam that is free to pivot on its support. The 
variable q1(t) is the position of the point of contact of the hoop relative to the center 
of the beam. The variable q2(t) is the angle of the beam relative to horizontal. 

The measured output is 

y(t) = q1(t) . (4.39) 

To specify a state-space model for the system, we express the rate of change of 
each of these state variables at time t as a function of these variables at t, and as 
a function of the torque input x(t). We arbitrarily choose the direction of positive 
torque to be that which would tend to increase the angle q2(t). The required 
expressions, which we do not derive here, are most easily obtained using Lagrange’s 
equations of motion, but can also be found by applying the standard and rotational 
forms of Newton’s second law to the system, taking account of the constraint that 
the hoop rolls without slipping. The resulting nonlinear time-invariant state-space 
model for the system, with the time argument dropped from the state variables qi 

and input x to avoid notational clutter, are: 

dq1 
= q3

dt

dq2


= q4
dt

dq3 1 2
= 

(
q1q4 − g sin(q2)

) 

dt 2 
dq4 

= 
mgr sin(q2) − mgq1 cos(q

2
2) − 2mq1q3q4 + x

. (4.40) 
dt J + mq1 

Here g represents the acceleration due to gravity, m is the mass of the hoop, r is 
its radius, and J is the moment of inertia of the beam. 

Equilibrium values of the model. An equilibrium state of a system is one that 
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can (ideally) be maintained indefinitely without the action of a control input, or 
more generally with only constant control action. Our control objective might be 
to design a feedback control system that regulates the hoop-and-beam system to its 
equilibrium state, with the beam horizontal and the hoop at the center, i.e., with 
q1(t) ≡ 0 and q2(t) ≡ 0. The possible zero-control equilibrium positions for any CT 
system described in state-space form can be found by setting the control input and 
the state derivatives to 0, and then solving for the state variable values. 

For the model above, we see that the only zero-control equilibrium position (with 
the realistic constraint that −π π< q2 < ) corresponds to a horizontal beam with 2 2 
the hoop at the center, i.e., q1 = q2 = q3 = q4 = 0. If we allow a constant but 
nonzero control input, it is straightforward to see from (4.40) that it is possible to 
have an equilibrium state (i.e., unchanging state variables) with a nonzero q1, but 
still with q2, q3 and q4 equal to 0. 

Linearization for small perturbations. It is generally quite difficult to elu
cidate in any detail the global or large-signal behavior of a nonlinear model such 
as (4.40). However, small deviations of the system around an equilibrium, such as 
might occur in response to small perturbations of the control input from 0, are quite 
well modeled by a linearized version of the nonlinear model above. As already de
scribed in the previous subsection, a linearized model is obtained by approximating 
all nonlinear terms using first-order Taylor series expansions around the equilib
rium. Linearization of a time-invariant model around an equilibrium point always 
yields a model that is time invariant, as well as being linear. Thus, even though the 
original nonlinear model may be difficult to work with, the linearized model around 
an equilibrium point can be analyzed in great detail, using all the methods available 
to us for LTI systems. Note also that if the original model is in state-space form, 
the linearization will be in state-space form too, except that its state variables will 
be the deviations from equilibrium of the original state variables. 

Since the equilibrium of interest to us in the hoop-and-beam example corresponds 
to all state variables being 0, small deviations from this equilibrium correspond to 
all state variables being small. The linearization is thus easy to obtain without 
formal expansion into Taylor series. Specifically, as we discard from the nonlinear 
model (4.40) all terms of higher order than first in any nonlinear combinations of 
terms, sin(q2) gets replaced by q2, cos(q2) gets replaced by 1, and the terms q1q4

2 

and q1q3q4 and q1
2 are eliminated. The result is the following linearized model in 

state-space form: 
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dq1 
= q3

dt 
dq2 

= q4
dt 
dq3 g 

q2 = −
dt 2 
dq4 

= 
mg(rq2 − q1) + x 

(4.41) 
dt J 

This model, along with the defining equation (4.39) for the output (which is already 
linear and therefore needs no linearization), can be written in the standard matrix 
form (4.16) and (4.17) for LTI state-space descriptions, with 

 
0 0 1 0 

  
0 

 

0 0 0 1 0 
A = 


0 −g/2 0 0 

 , b = 


0 

    

−mg/J mgr/J 0 0 1/J 
T c = 

[ 
1 0 0 0 

] 
(4.42) 

The LTI model is much more tractable than the original nonlinear time-invariant 
model, and consequently controllers can be designed more systematically and con
fidently. If the resulting controllers, when applied to the system, manage to ensure 
that deviations from equilibrium remain small, then our use of the linearized model 
for design will have been justified. 

4.5 STATE-SPACE MODELS FROM INPUT–OUTPUT MODELS 

State-space representations can be very naturally and directly generated during the 
modeling process in a variety of settings, as the examples in Sections 4.2.1 and 4.2.2 
suggest. Other — and perhaps more familiar — descriptions can then be derived 
from them; again, these previous examples showed how input–output descriptions 
could be obtained from state-space descriptions. 

It is also possible to proceed in the reverse direction, constructing state-space de
scriptions from impulse responses or transfer functions or input–output difference 
equations, for instance. This is often worthwhile as a prelude to simulation, or filter 
implementation, or in control design, or simply in order to understand the initial 
description from another point of view. The following two examples illustrate this 
reverse process, of synthesizing state-space descriptions from input–output descrip
tions. 

4.5.1 Determining a state-space model from an impulse response or transfer function 

Consider the impulse response h[n] of a causal DT LTI system. Causality requires 
of course that h[n] = 0 for n < 0. The output y[n] can be related to past and 
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present inputs x[k], k ≤ n, through the convolution sum 

n

y[n] = 
∑ 

h[n − k] x[k] (4.43) 
k=−∞ 

n−1

= h[n − k] x[k] + h[0]x[n] . (4.44) 
k=−∞ 

The first term above, namely 

n−1

q[n] = 
∑ 

h[n − k] x[k] , (4.45) 
k=−∞ 

represents the effect of the past on the present, at time n, and would therefore seem 
to have some relation to the notion of a state variable. Updating q[n] to the next 
time step, we obtain 

n

q[n + 1] = 
∑ 

h[n + 1 − k] x[k] . (4.46) 
k=−∞ 

In general, if the impulse response has no special form, the successive values of q[n] 
have to be recomputed from (4.46) for each n. When we move from n to n + 1, 
none of the past inputs x[k] for k ≤ n, can be discarded, because all of the past will 
again be needed to compute q[n + 1]. In other words, the memory of the system is 
infinite. 

However, consider the class of systems for which h[n] has the essentially exponential 
form 

h[n] = β λn−1 u[n − 1] + d δ[n] , (4.47) 

where β, λ and d are constants. The corresponding transfer function is 

β 
H(z) = + d (4.48) 

z − λ 

(with ROC z > λ ). What is important about this impulse response is that a | | | |
time-shifted version of it is simply related to a scaled version of it, because of its 
DT-exponential form. For this case, 

n−1

q[n] = β 
∑ 

λn−1−k x[k] (4.49) 
k=−∞ 

and 
n

q[n + 1] = β 
∑ 

λn−k x[k] (4.50) 
k=−∞ 

n−1

= λ
( 

β 
∑ 

λn−1−k x[k] 
) 

+ βx[n] 
k=−∞ 

= λq[n] + βx[n] . (4.51) 
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x[n] 
� 

� 

� 

� 

βL 

z − λL 

β1 

z − λ1 

d � 

� 

� 

� �� 

� . . . 

y[n] 

FIGURE 4.4 Decomposition of rational transfer function with distinct poles. 

Gathering (4.44) and (4.49) with (4.51) results in a pair of equations that together 
constitute a state-space description for this system: 

q[n + 1] = λq[n] + βx[n] (4.52) 

y[n] = q[n] + dx[n] . (4.53) 

Let us consider next a similar but higher order system with impulse response: 

h[n] = ( β1λ
n−1 + β2λ

n−1 + + βLλn−1 )u[n − 1] + d δ[n] (4.54) 1 2 L· · · 
with the βi and d being constants. The corresponding transfer function is 

( L
βi

H(z) = 
∑ ) 

+ d . (4.55) 
z − λii=1 

By using a partial fraction expansion, the transfer function H(z) of any causal 
LTI DT system with a rational transfer function can be written in this form, with 
appropriate choices of the βi, λi, d and L, provided H(z) has non-repeated — i.e., 
distinct — poles. Note that although we only treat rational transfer functions H(z) 
whose numerator and denominator polynomials have real coefficients, the poles of 
H(z) may include some complex λi (and associated βi), but in each such case its 
complex conjugate λ∗

i will also be a pole (with associated weighting factor βi
∗), and 

the sum 
βi(λi)

n + βi 
∗(λ∗ 

i )
n (4.56) 

will be real. 

The block diagram in Figure 4.5.1 shows that this system can be considered as 
being obtained through the parallel interconnection of subsystems corresponding 
to the simpler case of (4.47). Motivated by this structure and the treatment of the 
first-order example, we define a state variable for each of the L subsystems: 

n−1

qi[n] = βi 

∑ 
λi

n−1−k x[k] , i = 1, 2, . . . , L . (4.57) 
−∞ 
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With this, we obtain the following state-evolution equations for the subsystems: 

qi[n + 1] = λiqi[n] + βix[n] , i = 1, 2, . . . , L . (4.58) 

Also, combining (4.45), (4.53) and (4.54) with the definitions in (4.57), we obtain 
the output equation 

y[n] = q1[n] + q2[n] + + qL[n] + d x[n] . (4.59) · · · 

Equations (4.58) and (4.59) together comprise an Lth-order state-space description 
of the given system. We can write this state-space description in our standard 
matrix form (4.13) and (4.14), with 

 
λ1 0 0 0 0 

  
β1 

 · · · 
 0 λ2 0 0 0   β2 

A =  . . . . . . 


, b =  . 


(4.60) 
· · · 

 . . . . . .   . 
. . . . . . 

 
. 



0 0 0 0 λL βL· · · 
T c = 

( 
1 1 1 

) 
. (4.61) · · · · · · · · · 

The diagonal form of A in (4.60) reflects the fact that the state evolution equations 
in this example are decoupled, with each state variable being updated independently 
according to (4.58). We shall see later how a general description of the form (4.13), 
(4.14), with a distinct-eigenvalue condition that we shall impose, can actually be 
transformed to a completely equivalent description in which the new A matrix is 
diagonal, as in (4.60). (Note, however, that when there are complex eigenvalues, 
this diagonal state-space representation will have complex entries.) 

4.5.2 Determining a state-space model from an input–output difference equation 

Let us examine some ways of representing the following input-output difference 
equation in state-space form: 

y[n] + a1y[n − 1] + a2y[n − 2] = b1x[n − 1] + b2x[n − 2] . (4.62) 

One approach, building on the development in the preceding subsection, is to per
form a partial fraction expansion of the 2-pole transfer function associated with 
this system, and thereby obtain a 2nd-order realization in diagonal form. (If the 
real coefficients a1 and a2 are such that the roots of z2 + a1z + a2 are not real but 
form a complex conjugate pair, then this diagonal 2nd-order realization will have 
complex entries.) 

For a more direct attempt (and to guarantee a real-valued rather than complex-
valued state-space model), consider using as state vector the quantity 

 
y[n − 1] 

 

q[n] = 
 y[n − 2] 

. (4.63) 
x[n − 1] 

  

x[n − 2] 
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The corresponding 4th-order state-space model would take the form 
 



 



 



 



 



 



 



 


y[n] −a1 −a2 

1 0 
b1 b2 

0 0 
y[n − 1] 
y[n − 2] 

0 
0y[n − 1] 

x[n]
q[n + 1] = x[n]+=      0 0 0 0 x[n − 1] 

x[n − 2] 
1 

x[n − 1] 0 0 1 0 0 
 



 



y[n − 1] 

y[n] = 
( 
−a1 −a2 b1 b2

y[n − 2] 
x[n − 1] 
x[n − 2] 

(4.64)  

If we are somewhat more careful about our choice of state variables, it is possible 
to get more economical models. For a 3rd-order model, suppose we pick as state 
vector 

q[n] = 


 

y[n] 
y[n − 1] 
x[n − 1] 


 . (4.65) 

The corresponding 3rd-order state-space model takes the form 

q[n + 1] = 


 

y[n + 1] 
y[n] 


 = 




−a1 −a2 

1 0 
b2 

0 


 


 


 + 


 


 x[n] 

y[n] b1 

0 




y[n − 1] 
x[n − 1] x[n] 0 0 0 

y[n] = 
( 

1 0 0 
) 

 

y[n] 
y[n − 1] 
x[n − 1] 

1 

(4.66) 

A still more subtle choice of state variables yields a 2nd-order state-space model by 
picking 

y[n]
q[n] = . (4.67) −a2y[n − 1] + b2x[n − 1] 

The corresponding 2nd-order state-space model takes the form 
( 

−a1 1 
)( ( 

b1y[n + 1] y[n] 
x[n]+= −a2y[n] + b2x[n] 

y[n] = 
( 

1 0 
) ( 

−a2y[n − 1] + b2x[n − 1] 

y[n] 

0 b2−a2 

(4.68) −a2y[n − 1] + b2x[n − 1] 

It turns out to be impossible in general to get a state-space description of order lower 
than 2 in this case. This should not be surprising, in view of the fact that (4.63) 
is a 2nd-order difference equation, which we know requires two initial conditions in 
order to solve forwards in time. Notice how, in each of the above cases, we have 
incorporated the information contained in the original difference equation (4.63) 
that we started with. 
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