
What you need to know about bandlimited signals for 6.011 

1A continuous-time (CT) signal xc(t) is termed bandlimited to ωc rad/s or fc = ωc/(2π) 
Hz if its (CT) Fourier transform Xc(jω), defined by Z ∞ 

(1) Xc(jω) = xc(t)e −jωtdt , 
−∞ 

is 0 for |ω| ≥ ωc(< ∞) (we normally quote the smallest ωc for which this is true). In 
other words, the signal has no frequency content at frequencies fc Hz or higher, so it varies 
“smoothly” (or we could be more explicit and say “fc-smoothly”). 

For such a signal we can write the inverse CTFT as: 

1 
Z ωc 

(2) xc(t) = Xc(jω)e
jωtdω . 

2π −ωc 

Note the limits on the integral! 

Now consider the discrete-time (DT) signal xd[n] obtained by sampling xc(t) at intervals 
of T seconds. We label this sampling operation as continuous-to-discrete (C/D) trans-
formation (it’s the most common kind of C/D transformation, and the only kind we’ll 
consider). We can now write 

1 
Z ωc 

(3) xd[n] = xc(nT ) = Xc(jω)e
jωnT dω . 

2π −ωc 

All that’s happened here is we’ve written t = nT in the exponent in Eq. (2). Making the 
change of variable Ω = ωT rad, we can rewrite Eq. (3) as Z Ωc 

(4) xd[n] = 
1 
2π −Ωc 

Xc(jω) 
T 

ejΩndΩ , 

where Ωc = ωcT . 

Compare the expression in Eq. (4) with the inverse DTFT formula that expresses the 
DT signal xd[n] in terms of its DTFT Xd(e

jΩ):Z π 

(5) xd[n] = 
1 

Xd(e
jΩ)ejΩndΩ ,

2π −π 

where 
∞X 

(6) Xd(e
jΩ) = xd[n]e −jΩn . 

n=−∞ 

We see from comparing Eqs. (4) and (5) that if Ωc ≤ π, i.e., if ωcT ≤ π, i.e., if the 
sampling frequency fs = 1/T satisfies 

1 ωc
(7) fs = ≥ ≥ 2fc ,

T π 
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then (because the Fourier transform of a signal is unique) 

Xc(jω)
(8) Xd(e

jΩ) = 
T 

for angular frequencies Ω in the interval [−π, π], which we might refer to as the canonical 
or principal interval (and repeats periodically with period 2π outside that, as any DTFT 
must). This is Eq. (1.80) in the text. 

Thus, if the sampling frequency is greater than twice the highest frequency present in 
the signal xc(t), we can reconstruct the CTFT of this CT signal, and hence the CT signal 
itself, from the DTFT of the sampled DT signal, and hence from the sampled signal itself. 
This is Nyquist’s sampling theorem, and the relationship in Eq. (8) is key. This 
equation shows that for sampling at or above the Nyquist rate, we get the DTFT of the 
sampled sequence by simply scaling the CTFT amplitude by the factor 1/T and scaling 
the frequency axis by the factor T (to go from ω to Ω = ωT ). And to go in the other 
direction, we simply perform the opposite scaling of amplitude and frequency axes. 

Although many of the problems in Chapter 1 deal with cases where there is aliasing, 
i.e., where the sampling frequency does not satisfy the condition in Eq. (7), we shall not 
worry this semester about such refinements. 

A small exercise (for you to do before reading further): Show that why Eq. (2) can 
be rewritten as Z ωc � ∞ �X 

−jΩn(9) xc(t) = 
1 

T xd[n]e ejωtdω . 
2π −ωc n=−∞ 

Assume now that T is set to the largest possible value that avoids aliasing, so T = π/ωc, 
i.e., we are sampling at the Nyquist rate. Interchanging summation and integration in the 
above expression, evaluating the integral on each term, and verifying that � � 

πZ ωc sin (t − nT )2π Tjω(t−nT )dω =(10) e π ,
T (t − nT )−ωc T 

we see that Eq. (9) yields a formula expressing the bandlimited signal xc(t) directly in 
terms of its samples: � � 

π∞X sin (t − nT )T 
(11) xc(t) = xd[n] π . 

(t − nT )T 

To tease apart this expression, first look at the n = 0 term, which is xd[0] sin(πt/T )/(πt/T ). 
The unit-height sinc function sin(πt/T )/(πt/T ) takes the value 1 at t = 0 and the value 0 
at all other sampling instants, i.e., at all nonzero integer multiples of T , varying smoothly 
in between these points. Note also that the transform of this sinc function is constant at 
the value T for ω in (−ωc, ωc), and is zero outside this; it has no frequencies higher than fc 

Hz (and this is the sense in which it varies “smoothly”). Multiplying the unit-height sinc 

n=−∞ 



3 

by xd[0] scales it to a sinc function that takes the value xd[0] at t = 0 but is still 0 at all 
other sampling instants, and varies smoothly in between. 

Now we do the same thing for the samples at all the other sampling instants: for a general 
sampling instant nT , we center a sinc function on that sampling time, which causes the 
time argument of the sinc to change from t to t − nT , and then scale this shifted sinc 
by xd[n]. The combination of this infinite set of scaled and shifted sinc functions, each 
bandlimited to (−ωc, ωc), is what creates the expression in Eq. (11), which we refer to 
as the ideal bandlimited interpolation of the samples xd[n], to create or reconstruct the 
bandlimited signal xc(t). The operation of generating a CT signal from a DT one in this 
fashion is referred to as ideal discrete-to-continuous (D/C) conversion. 
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