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I. Introduction 

We make use of some linear algebra concepts in 6.011 with the thought that most students 
have been exposed to relevant concepts previously, perhaps in high school, and perhaps in 18.03 

or equivalent. However, it may be that not everyone has seen linear algebra before, and it may be 
that some students may be rusty. So, this provides motivation to develop some notes that cover 

some of the basic notions, hopefully in a simple way. In what follows we discuss some of the ideas, 
notation, and results that may be useful. 

II. Linear equations in terms of a matrix and vectors 

Perhaps the place to start is with a set of linear equations of the form 

2x1 + 3x2 = 5 

x1 − x2 = 0 (1) 

Probably we can solve these equations pretty quickly for x1 and for x2. However, given that linear 
equations come up often in mathematics, engineering and science, it would be good to have a 

systematic way of thinking about them. For example, we might consider these two equations as a 
particular example of a more general set of coupled equations of the form 

A11x1 + A12x2 = b1 

A21x1 + A22x2 = b2 (2) 

There may be more complicated problems of this kind that involve more unknowns, such as 

A11x1 + A12x2 + A13x3 = b1 

A21x1 + A22x2 + A23x3 = b2 

A31x1 + A32x2 + A33x3 = b3 (3) 

Probably matrices were developed (long ago) originally to help with dealing with this kind of 
problem. For two linear equations we can make use of matrices and vectors to write 

" # " # " # " # 

A11 A12 x1 A11x1 + A12x2 b1 = = (4) 
A21 A22 x2 A21x1 + A22x2 b2 

1 



where matrix multiplication of a vector is indicated in the intermediate step. A nice thing about 

this approach is that it allows us to write lots of coupled linear equations simply making use of the 
subscripts as 

X 

Aijxj = bj (5) 
k 

In terms of matrix and vector notation this is written as 

Ax = b (6) 

In the case of three unknowns we can write 

2 3 2 3 2 3 2 3 

A11 A12 A13 x1 A11x1 + A12x2 + A13x3 b1 
6 7 6 7 6 7 6 7 

4 
A21 A22 A23 5 4 

x2 5 
= 

4 
A21x1 + A22x2 + A23x3 5 

= 
4 

b2 5 
(7) 

A31 A32 A33 x3 A31x1 + A32x2 + A33x3 b3 

This can be generalized to as many unknowns as we like. If we have the same number of equations 
as unknowns, then the matrix A will be a square matrix. 

There are written records that this idea was known in antiquity; where a mathematical text 
written in the second century BCE in China discusses linear equations, solution by Gaussian elim-

ination, and a treatment equivalent to the use of matrices and vectors as above. 

III. Matrix multiplication 

Once we have matrices, a natural question concerns what are the associated properties. This 
opens up the door to a potentially vast field of study, of which in these notes we will only touch 

on a few simple ones that we need for class. To proceed, we will need to know how to multiply 
matrices. We consider the multiplication of two matrices to make a third 

AB = C (8) 

in the case of square matrices. In the case of 2 × 2 matrices this can be written out as 

" # " # " # " # 

A11 A12 B11 B12 A11B11 + A12B21 A11B12 + A12B22 C11 C12 = = (9) 
A21 A22 B21 B22 A21B11 + A22B21 A21B12 + A22B22 C21 C22 

We can also make use of the subscripts to write 

X 

Cij = AikBkj (10) 
k 

At this point it seems useful to consider the notion of an identity matrix, which in the 2 × 2 
case can be written as 

" # 

1 0 
I = (11) 

0 1 
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We can evaluate the product 

" # " # " # 

1 0 A11 A12 A11 A12 
IA = = = A (12) 

0 1 A21 A22 A21 A22 

Multiplication of a matrix by the identity matrix simply gives the matrix as a result. We can 

construct bigger (square) identity matrices similarly with 1 for diagonal elements and 0 for o�-
diagonal elements, which in general which satisfy 

IA = A (13) 

The identity matrix multiplied by a vector gives the same vector back as well 

Ix = x (14) 

IV. Eigenvectors and characteristic equations for eigenvalues 

It is possible to find vectors which are able to produce scaled versions of themselves when 

multiplied by a matrix. For example, notice that 

" # " # " # " # 

1 1 1 3 1 
= = 3 (15) 

10 −2 2 6 2 

This is a special case of 

Av = �v (16) 

where � is a scalar and v is a vector. 
We are interested in figuring out how to find the eigenvalues and eigenvectors. We might start 

with finding and equation for the eigenvalue � in the simple case of a 2 × 2 matrix, in which case 
we can write 

" # " # " # 

A11 A12 v1 v1 = � (17) 
A21 A22 v2 v2 

This is equivalent to the linear equations 

A11v1 + A12v2 = �v1 

A21v1 + A22v2 = �v2 (18) 

Here the unknowns include v1, v2 and �. It is possible to eliminate v1 and v2 to get an equation 
for �. To do this we can first write 

(A11 − �)v1 + A12v2 = 0 

A21v1 + (A22 − �)v2 = 0 (19) 
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and then eliminate v1 by forming 

A21(A11 − �)v1 + A21A12v2 = 0 

(A11 − �)A21v1 + (A11 − �)(A22 − �)v2 = 0 (20) 

and then subtracting to obtain 

� � 

(A11 − �)(A22 − �)− A21A12 v2 = 0 (21) 

In the general case v2 might not be zero, so we end up with a constraint on � 

(A11 − �)(A22 − �)− A21A12 = 0 (22) 

This is the characteristic equation in the case of a 2 × 2 matrix that the eigenvalues must satisfy 

in order for the eigenvalue relation to be consistent. 
We can repeat this kind of calculation in the case of a general 3 × 3 matrix, and get a more 

complicated characteristic equation. The result can be written as 

�3 − (A11 + A22 + A33)�
2 + (A12A21 + A13A31 + A23A32 − A11A22 − A11A33 − A22A33)� 

+A11A22A33 + A13A23A31 + A13A32A21 − A11A23A32 − A22A13A31 − A33A12A21 = 0 (23) 

There is no diÿculty continuing this kind of calculation for bigger square matrices; however, it is 
clear that we will generate large numbers of terms. Instead of repeating this kind of elimination by 

hand each time, we would like to automate the calculation. 

V. Characteristic equation in terms of a determinant 

Today we recognize the development of the characteristic equation as deriving from the deter-
minantal equation 

det(�I− A) = 0 (24) 

The notion of the determinant originated in connection with the solution of sets of linear equations, 
where a solution to Ax = b can be obtained if det(A) 6 0. In 1683 Seki in Japan, and independently = 
Liebnitz in Europe, evaluated the determinant for the lowest square matrices. There were earlier 

calculations for the 2×2 and 3×3 matrices that can retrospectively be interpreted as involving the 
evaluation of the determinant. It is likely that the Chinese mathematicians understood the need 

for the determinant to be nonzero to obtain a solution to a linear system of equations in antiquity. 
We can think of the determinant as being defined as the result of the calculation above that 

eliminates the Aij matrix elements in the eigenvalue calculation. This calculation has been well 
studied over the years, with the result that specific formulas were derived long ago for “small” 

matrices. You might have seen a more systematic approach that makes use of cofactors and minors 
(due to Laplace). Expansion formulas have been developed that describe the general case as well; 

one such formula can be written as 
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X X 

det(A) = · · · �i1···in 
A1,i1A2,i2 · · · An,in 

(25) 
i1 in 

where �i1···in 
is a Levi-Civita symbol which has a value of 0, +1 or -1 according to a test of the 

permutation of the indices. 

For class this term we will be able to survive for the most part with determinantal formulas for 
the 2 × 2 case 

" # 

A11 A12 det = A11A22 − A12A21 (26) 
A21 A22 

and for the 3 × 3 case 

2 3 

A11 A12 A13 
6 7

det 
4 

A21 A22 A23 5 
= 

A31 A32 A33 

A11A22A33 + A12A23A31 + A13A21A32 − A11A23A32 − A12A21A33 − A13A22A31 (27) 

VI. Matrix inverse 

If we have a single linear equation of the form 

Ax = b (28) 

then if A is not zero we can solve it by writing 

A−1x = b (29) 

If we have a matrix and vector equation written as 

Ax = b (30) 

then it seems to be reasonable that we might be able to write 

A−1x = b (31) 

For this to work we need to be able to compute the inverse of a matrix, and it would be good to 
know for what matrices this can work. For example, we know that in the scalar case above that if 

A is zero, then we are not going to be able to use the inverse. The same idea applies in the case of 
a matrix. 

If we consider the case of a 2 × 2 matrix, we might start with 

" # " # " # 

A11 A12 x1 b1 = (32) 
A21 A22 x2 b2 

We know that we can write these as linear equations of the form 
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A11x1 + A12x2 = b1 

A21x1 + A22x2 = b2 (33) 

We can solve these by multiplying by a factor and subtracting; for example, to eliminate x1 we 
multiply by factors to get 

A21A11x1 + A21A12x2 = A21b1 

A11A21x1 + A11A22x2 = A11b2 (34) 

and then subtract to obtain 

(A11A22 − A12A21)x2 = A11b2 − A21b1 (35) 

If A11A22 − A12A21 is not zero, then we can divide to obtain 

A11b2 − A21b1 
x2 = (36) 

A11A22 − A12A21 

For the other case we can write 

A22A11x1 + A22A12x2 = A22b1 

A12A21x1 + A12A22x2 = A12b2 (37) 

and subtract to obtain 

(A22A11 − A12A21)x1 = A22b1 − A12b2 (38) 

Once again if A22A11 − A12A21 is not zero, then we can solve to obtain 

A22b1 − A12b2 
x1 = (39) 

A22A11 − A12A21 

These solutions can be combined to write 

" # " # " # 

x1 

x2 

= 
1 

A22A11 − A12A21 

A22 

−A21 

−A12 

A11 

b1 

b2 

(40) 

We recognize that for this approach to work we require 

A22A11 − A12A21 6= 0 (41) 

But we recognize that this can be written using the definition of the determinant for the 2× 2 case 
as 

det(A) 6 0= (42) 

We will not be able to obtain a unique solution for a linear system if the determinant is zero, which 
is consistent with not being able to construct an inverse for A if the determinant is zero. 

From the calculation above we conclude that the inverse for a 2× 2 matrix is 
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" # 

1 
A−1 A22 −A12 = (43) 

det(A) −A21 A11 

Although we will not need it this term, for the inverse of a 3×3 matrix, as long as the determinant 
is not zero, we can write 

2 3 

A22A33 − A23A32 A13A32 − A12A33 A12A23 − A13A22 1 
6 7

A−1 = 
4 

A23A31 − A21A33 A11A33 − A13A31 A13A21 − A11A23 5 
(44) 

det(A) 
A21A32 − A22A31 A12A31 − A11A32 A11A22 − A12A21 

For bigger square matrices it is possible to develop explicit formulas for the inverse as long as the 

determinant is not zero. 

VII. Matrix of the eigenvectors 

It is possible to construct a matrix for a 2 × 2 matrix A from the eigenvectors v1 and v2 

according to 

V = [ v1 v2 ] (45) 

If we write the eigenvectors in terms of their elements 

" # " # 

v1 v1 
v1 = v2 = (46) 

v2 v2 
1 2 

then the V matrix might be written as 

" " # " # # 

v1 v1
V = (47) 

v2 v2 
1 2 

To proceed we might adopt for this a notation of the form 

" # 

(v1)1 (v1)2
V = (48) 

(v2)1 (v2)2 

where (vi)k indicates the ith element of the vector of the kth eigenfunction. 

Since this matrix is made up of the eigenvectors of A, and since each of the eigenvectors satisfies 
the eigenvalue equation 

Avk = �kvk (49) 

then we can write 

" # 

�1(v1)1 �2(v1)2
AV = A[ v1 v2 ] = [ �1v1 �2v2 ] = (50) 

�1(v2)1 �2(v2)2 

For the argument that follows, we will need to define a diagonal matrix made up of the eigenvalues 

according to 

7 



V 

" # 

�1 0 
� = (51) 

0 �2 

If we multiply V and �, we get the same resulting matrix as we got when we multiplied A times 

" # " # " # 

V� = 
(v1)1 
(v2)1 

(v1)2 
(v2)2 

�1 

0 
0 
�2 

= 
�1(v1)1 
�1(v2)1 

�2(v1)2 
�2(v2)2 

(52) 

Consequently, we can write 

AV = V� (53) 

Although we found this to be true for the 2 × 2 case, it works for the other cases as well. 

One reason that this is interesting is that it allows us to (formally) diagonalize the A matrix 
by writing 

V−1� = AV (54) 

which works as long as the inverse matrix exists. In 6.011 we focus almost exclusively on matrices 
for which the eigenvalues are distinct, in which case the eigenvectors are independent, which is the 
conditions that the inverse matrix exists. 

VIII. Application: Diagonalization of a state space model 

One application of the matrix of eigenvectors is for the diagonalization of a state space model. 

Suppose that we start with a state space model of the form 

d 
q(t) = Aq(t) + bx(t)

dt

T y(t) = c q(t) + dx(t) (55) 

We would like to expand the state vector in terms of the eigenvectors according to 

q(t) = v1r1(t) + v2r2(t) (56) 

Based on the discussion above, we know that we can write this in terms of the matrix of eigenvectors 

according to 

q(t) = Vr(t) (57) 

If we plug this into the evolution equation for the state vector q(t), we obtain 

d 
Vr(t) = AVr(t) + bx(t) (58) 

dt 

Since the matrix of eigenvectors does not depend on time, this can be written as 
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d 
V r(t) = AVr(t) + bx(t) (59) 

dt 

If the eigenvalues are independent, then the V matrix has an inverse, which leads to 

V−1
d 

r(t) = AVr(t) + V−1bx(t) (60) 
dt 

We recall that 

V−1AV = � (61) 

If the b vector is written in terms of the eigenvectors 

b = v1�1 + v2�2 = V� (62) 

then we can express � as 

V−1� = b (63) 

We end up with the state evolution equation written in terms of the mode amplitudes as 

d 
r(t) = �r(t) + �x(t) (64) 

dt 

This is equivalent to 

d 
r1(t) = �1r1(t) + �1x(t)

dt 

d 
r2(t) = �2r2(t) + �2x(t) (65) 

dt 

There is no coupling between the di�erent modes now, which makes it much easier to solve. 
For the state space output equation we can write 

Ty(t) = c Vr(t) + dx(t) (66) 

We can evaluate the product 

T T c T V = c T [ v1 v2 ] = [ c v1 c v2 ] = [ ˘1 ˘2 ] = ˘T (67) 

We end up with 

˘T y(t) = r(t) + dx(t) (68) 

which is equivalent to 

y(t) = ˘1r1(t) + ˘2r2(t) + dx(t) (69) 

We now have the output in terms of the mode amplitudes. 
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