MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 Microelectronic Devices and Circuits Homework #8

Problem 1: Howe and Sodini P10.6

Problem 2:

Device Parameters	
$I_{SUP}=250uA$	$I_{\rm S}=10^{-15}{\rm A}$
$R_{\rm S}=5k\Omega$	$\beta_{\rm F} = \beta_{\rm o} = 100$
$R_L=10k\Omega$	V _A =25V
roc=∞	$f_T=1GHz$ @ $I_C=250uA$
	C _µ =0.1pF

a.) Calculate V_{BIAS} such that $V_{OUT}=0V$.

b.) Calculate the low frequency loaded voltage gain v_{out}/v_s .

c.) Calculate C_{π} from the device data.

d.) Use the Miller approximation to calculate ω_{3db} .

e.) Use the open-circuit time constant method to calculate ω_{3db} .

Problem 3:

Device Parameters	
$R_L=10k\Omega$	$C_{je0}=100 fF$
$R_{\rm S}=5k\Omega$	$\tau_F = 100 \text{ps}$
$I_{\rm S}=10^{-15}{\rm A}$	C _{µ0} =200fF
$\beta_{\rm F} = \beta_{\rm o} = 100$	r _{oc} =∞
V _A =25V	$\Phi_{\rm Bc}$ =0.75V

In Problem 2, the high source resistance lowered ω_{3db} . One method of improving the frequency response is to precede the common emitter stage with a common-collector, CC, also called an emitter-follower stage. Under this condition the source resistance of the CE amplifier is the output resistance of the CC amplifier.

- a.) Find I_{SUP} for the emitter follower such that its R_{out} equals 100 Ω .
- b.) Calculate V_{BIAS} such that $V_{OUT}=0V$.
- c.) Calculate C_{π} and C_{μ} from the device data for the emitter-follower.
- d.) Use the open-circuit time constant method to calculate ω_{3db} for the emitter-follower.

Problem 4:

Device Parameters	
$R_{S}=100k\Omega$	$\mu_n C_{ox} = 50 u A / V^2$
$R_L=1k\Omega$	$C_{ox}=2.3 \text{ fF/um}^2$
$\infty = \infty$	$C_{Jn}=0.1 fF/um^2$
V _{Tn} =1V	C _{JSWn} =0.5fF/um
$\lambda_n = 0.05 V^{-1}$	L _{diffn} =6um
	C _{ov} =0.5fF/um

The frequency response of the NMOS common-gate amplifier depends on g_m , C_{gs} , C_{gd} , and C_L . One method of increasing g_m is to increase the bias current. Another method of increasing g_m is to increase the W of the device. However, as the width of the device is increased, the parasitic capacitances also increase. For this problem, let $C_L=C_{db}$. Assume that the amplifier is biased such that $V_{OUT}=0V$.

- a.) Use the open-circuit time constant method to derive an expression for ω_{3db} for the common-gate amplifier including C_L .
- b.) Use Matlab or Excel to plot ω_{3db} vs. I_{SUP} for $50uA < I_{SUP} < 500uA$. Use W/L=50um/2um.
- c.) Use Matlab or Excel to plot ω_{3db} vs. W for 50um < W < 500um. Use I_{SUP}=100uA.
- d.) What is the effect of increasing I_{SUP} (for a constant W) on the frequency response of this amplifier? What are some potential drawbacks of this approach?
- e.) What is the effect of increasing W (for a constant I_{SUP}) on the frequency response of this amplifier? What are some potential drawbacks of this approach?

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.