6.012 Microelectronic Devices and Circuits Spring 2005

	April 20, 2005 Quiz #2	
		Problem #points
NAME		1
RECITATION TIME		2
		3
	Tot	al

General guidelines (please read carefully before starting):

- Make sure to write your name on the space provided above.
- Open book: you can use any material you wish. But no computers.
- All answers should be given in the space provided. Please do not turn in any extra material.
- You have 120 minutes to complete the quiz.
- Make reasonable approximations and *state them*, i.e. low-level injection, extrinsic semiconductor, quasi-neutrality, etc.
- Partial credit will be given for setting up problems without calculations. NO credit will be given for answers without reasons.
- Use the symbols utilized in class for the various physical parameters, i.e. N_a , τ , ε , etc.
- Pay attention to problems in which *numerical answers* are expected. An algebraic answer will not accrue full points. Every numerical answer must have the proper *units* next to it. Points will be subtracted for answers without units or with wrong units. In situations with a defined axis, the *sign* of the result is also part of the answer.

Unless otherwise stated, use:

$$\begin{split} q &= 1.6 \ X \ 10^{-19} \ C \\ kT/q &= 25 \ mV \ at \ room \ temperature \\ n_i &= 10^{10} \ cm^{-3} \ for \ silicon \ at \ room \ temperature \\ \epsilon_{Si} &= 10^{-12} \ F/cm \ \epsilon_{ox} &= 3.45 X 10^{-13} \ F/cm \end{split}$$

1. (30 points)

A CMOS inverter has the following voltage transfer characteristics and transistor data.

a) Calculate W_p such that $-I_{Dp} = I_{Dn} = 100 \mu A$ at $V_{IN} = V_M$.

b) Calculate the NMOS transconductance, g_{mn} , at $V_{IN} = V_M$.

c) Calculate $(\lambda_n + \lambda_p)$.

An inverter with a p-channel current source has the same current 100 μ A flowing through the p and n channel device at V_{IN}=V_M is shown below. This inverter has different p-channel sizing but the same transistor data.

d) What is the value of the V_B such that $-I_{Dp} = I_{Dn} = 100\mu A$ at $V_{IN} = V_M$?

e) Calculate the voltage gain at $V_{IN} = V_M$.

2. (35 points)

You are given a *pn* junction diode where you have microscopy and chemical staining techniques to determine the area of the diode is 10^{-4} cm² and the n-type region is degenerately doped (>> 10^{19} cm⁻³).

You have access to a capacitance-voltage measurement system and have measured three data points and have been asked to determine some of the diode parameters.

V	С	
-1.0V	0.68pF	
0V	1pF	
0.6V	3.2nF	

Note: If you could not calculate some of the parameters, leave your answer in terms of those unknown parameters.

a) Calculate the depletion region width at thermal equilibrium, x_{po} .

b) Calculate the built-in potential ϕ_B for this diode.

c) Calculate the doping concentration of the p-type region of the diode.

d) Calculate the physical width of the p-type region. Ignore the depletion region.

3. (35 Points)

A silicon *npn* bipolar transistor with Ebers-Moll parameters $I_s(Si) = 10^{-15}A$, and $\beta_F(Si)=100$ is biased as shown below.

a) What is the region of operation? Explain your answer.

b) Calculate the collector current I_c .

c) Calculate the base-emitter voltage, V_{BE} .

d) A second *npn* bipolar transistor is fabricated with the emitter and collector regions consisting of Si, while the base region consists of another semiconductor, called SiGe, which has an intrinsic carrier concentration $n_i(SiGe) = 1 \times 10^{11} \text{ cm}^{-3}$. Assume that the diffusivities D_n and D_p in SiGe are identical to those for Si, and that the width of the emitter, base, and collector regions are the same in both devices, i.e. $W_E(Si)=W_E(SiGe)$, $W_B(Si)=W_B(SiGe)$, and $W_C(Si)=W_C(SiGe)$. For both devices, $N_{dE}=10^{19} \text{ cm}^{-3}$, $N_{aB}=10^{17} \text{ cm}^{-3}$, and $N_{dC}=10^{16} \text{ cm}^{-3}$. Assume that recombination only takes place at the contacts. For $V_{BE}=0.6V$ and $V_{BC}=-1.4V$, sketch the minority carrier densities in the emitter, base, and collector, for both the Si and SiGe transistors, on the axes below (note that the space-charge regions are omitted and only the quasi-neutral regions are shown). Label the sketches with the numerical values at the contacts and at the edges of the space-charge regions. (i.e. neglect the space-charge regions)

e) For the Si and SiGe bipolar transistors and bias conditions given in (d), calculate the ratio of the collector saturation currents, $I_S(SiGe)/I_S(Si)$.

f) For the Si and SiGe bipolar transistors and bias conditions in (d), calculate the ratio of the forward active current gains, $\beta_F(SiGe)/\beta_F(Si)$.

g) The Si and SiGe bipolar transistors in (d) are now biased in the forward active region with the same V_{BC} , and V_{BE} adjusted such that the collector currents of the two devices are equal, i.e. $I_c(Si)=I_c(SiGe)$. Under these bias conditions, calculate the ratio of the input resistances of the two devices, $r_{\pi}(SiGe)/r_{\pi}(Si)$.

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.