6.012 Microelectronic Devices and Circuits

Tutorial #3

Problem 1 – pn junction electrostatics

Consider a pn junction with $N_d = 5 \times 10^{17} \text{ cm}^{-3}$ and $N_a = 10^{17} \text{ cm}^{-3}$ as sketched below in Figure T3.1.

Figure T3.1: Doping profile for a pn junction

- a) What is the junction potential drop across the pn junction $\phi_J = \phi_B$ in thermal equilibrium?
- b) What is the depletion layer width X_{do} in thermal equilibrium?
- c) What is the electrostatic field at x=0, E(0), in thermal equilibrium?
- d) What is the electrostatic potential at x= 0, $\phi(0)$, in thermal equilibrium?
- e) What is the total amount of charge per unit area on the p-type side of the junction in thermal equilibrium
- f) What is depletion capacitance, C_j, in thermal equilibrium?
- g) How do parts a)-f) change with a reverse bias of $V_D = -3V$?

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.