Tutorial #5

Problem 1 – n-MOSFET

You are given an n- MOSFET with the following parameters — $V_{Tn} = 0.5V$, $\mu_n = 250 \, cm^2 / Vs$, $t_{ox} = 10 \, nm$, $L = 0.5 \, \mu m$, $W = 25 \, \mu m$

The MOSFET is biased as shown in Figure T5-1 with the following initial bias conditions: $V_{GS} = 2.5V$, $V_{DS} = 2.5V$, $V_{BS} = 0V$

Figure T5-1.

- a) In what regime of operation is the MOSFET?
- b) Ignoring secondary effects such as channel length modulation (CLM), what is the drain current I_D ?
- c) If the substrate doping is $N_a=10^{17}$ cm⁻³, what is the maximum bulk depletion charge density when the surface is inverted at the source end $Q_{Bmax}(y=0)$ for $V_{BS}=0$?
- d) If the body-to-source voltage V_{BS} is now changed to V_{BS} =-2 V, with other bias conditions remaining the same, in what regime is the n-MOSFET?
- e) If the body-to-source voltage V_{BS} is now changed to V_{BS} =-2 V, with other bias conditions remaining the same, what are the new values of $Q_{Bmax}(y=0)$?
- f) How does $Q_N(y=0) + Q_{B_{\text{max}}}(y=0)$ when V_{BS}=-2 V compare to

 $Q_N(y=0) + Q_{B\max}(y=0)$ when V_{BS}=0 V?

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.