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6.013/ESD.013J — Electromagnetics and Applications
Problem Set 11 - Solutions

Prof. Markus Zahn

Fall 2005

MIT OpenCourseWare

Problem 11.1
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Figure 1: Impedance model. (Image by MIT OpenCourseWare.)
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Figure 2: Surface area of half-hemisphere. (Image by MIT OpenCourseWare.)
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P 100 x 103
=P = [ = = = 6.366 x 10~° Watts/m?
o orr? . 2m(50 x 10°)2 x atts/m

[Pr]max = 1A = (6.336 x 107° W/m?)(10 m?) = 63.66 x 10~°% Watts

Problem 11.2

A
E(r,0,t) in the far field limit
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Problem 11.3
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Figure 3: Dipole configuration and spherical coordinate system. (Image by MIT OpenCourseWare.)

A

Intensity of radiation in the far field? This situation is similar to that developed in lecture, but the dipoles
are oriented on the y-axis rather than the z-axis.
For a single dipole, the field on the z, y-plane is
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2 4drr

For two dipoles, fl = Ip and fg = Ipe??, both with length deg
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These small differences only matter for phase
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Figure 4: Triangle details. (Image by MIT OpenCourseWare.)
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Ee,total = 7’]% (efjkr‘i’jk% sin ¢ —+ e*jk’T*% sin d)eJq[))

jk[odcffejw/Qefjkr (ej(k%sinqbfg) n efj(k%sinqbfg))
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270°

Figure 5: Plot of radiation pattern. (Image by MIT OpenCourseWare.)

Problem 11.4

A dipole in the é,-direction has an electric field in the far-field, in spherical coordinates, of
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77471’7‘
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Figure 6: Dipole orientation. (Image by MIT OpenCourseWare.)

We have a dipole in the é,-direction. We can rotate the cartesian system such that we can use the solution
for the z-directed dipole. If we transform the spherical solution back to cartesian coordinates correctly we

will have found our solution.
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Figure 7: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.)

We are only interested in the z-axis: = 7/2, ¢ = +7/2

. iTkd _ .
E= n]—e_ﬂwéa
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E= _émnﬂeﬂ'klzl
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This dipole has current I = Iy and length d = dog :
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We also have a dipole in the &,-direction. We use the same method: The z-axis: 6§ = 7/2, ¢ = £7/2
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Figure 8: Dipole with rotated coordinates. (Image by MIT OpenCourseWare.)

On z-axis, & = —&,, r = |z|
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This dipole has I = jly and d = dug.

~
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Total field is given by superposition:

klodes
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Etotal = (_]éLE + éy)
On the +z-axis, z > 0

klodeg

e—]kz
4z
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B

Polarization: As time advances, how does the direction and amplitude of the electric field change? For this,
we need to look at the real E-field, not just the complex amplitude:

Tz

E = Re{Ee’“'} = Re {(—jém [cos(wt — kz) + jsin(wt — kz)] + &,[cos(wt — kz) + jsin(wt — kz)])n%}

. klydeg
E = (&, sin(wt — kz) + &, cos(wt — kz))no—ﬁ
Az
Let us look at one point in space, z = z1, and see how the direction and magnitude of the E-field changes:

Only the direction of the field changes as time advances; the magnitude remains the same. Thus, it is

_ _ A o lokdess
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Figure 9: Time evolution of electric field. (Image by MIT OpenCourseWare.)

circularly polarized, since the field traces out a circle.

To determine whether the polarization is right-handed or left-handed, curl your fingers of both hands in
the direction of the path traced out by the field. If your right thumb points in the direction of propagation
(42 in this case), then the field is right-handed. If your left thumb points in the direction of propagation,
however, it is left-handed. In this case we have a left-handed circularly polarized wave.
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C
Find the magnetic field:
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Problem 11.5
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Figure 10: Dipole configuration. (Image by MIT OpenCourseWare.)
In general:
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Figure 11: Plot of radiation pattern. (Image by MIT OpenCourseWare.)

Figure 12: Dipole configuration. (Image by MIT OpenCourseWare.)
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Nulls:
T, T
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m=0 sing=-1 ¢=-90°
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Figure 13: Plot of radiation pattern. (Image by MIT OpenCourseWare.)
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C

Figure 14: Dipole configuration. (Image by MIT OpenCourseWare.)
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cos(2msing) = —1 [2cos(2msing) — 1]* =9
27 sin ¢ = +m, +37w, 57, ...

1
sin ¢ = ig,% — ¢ = +30°, £150°
Smaller Peaks?

cos(2msing) =1 [2cos(2msing) — 1% =1
2msing =0, +2m, ...
sing =0,+1
¢ =0°,180°,£90°

What about cos(27sin ¢) = 0? Though [2 cos(27 sin ¢) — 1] = 1 as well, when cos(27 sin ¢) = 0, this is not
a peak as can be seen by taking the second derivative with respect to ¢ and evaluating it at that point.

Figure 15: Plot of radiation pattern. (Image by MIT OpenCourseWare.)
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Problem 11.6
A

Figure 16: Dipole configuration. (Image by MIT OpenCourseWare.)

Putting 2 identical dipoles 1/2 a wavelength apart means they will cancel along the z-axis. But since neither
is delayed with respect to each other, they add on the y-axis to a maximum.

Figure 17: Dipole configuration. (Image by MIT OpenCourseWare.)

This is the same pattern as in 11.3(b), but rotated.
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C

We need to come up with a maximum at ¢ = 0, but a minimum at ¢ = w. We have 2 dipoles of equal

amplitude, separated by a distance a.
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Figure 18: Dipole configuration. (Image by MIT OpenCourseWare.)

¢ =0 = must add to a peak

a
2 cos (k§ — 5) =2

KLY 0 ton tdr, ..
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We want the solution with the fewest nulls and peaks, so let us take the lowest angles:
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— Yt g
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Figure 19: Dipole configuration. (Image by MIT OpenCourseWare.)
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